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Abstract—In underground mine and road tunnels, multipath
fading is much more severe than in the terrestrial wireless
channels. To overcome the multipath fading in underground tun-
nels, MIMO (Multiple Input Multiple Output) and Cooperative
Communication system can be utilized. Since the underground
channel characteristics are significantly different from those in
terrestrial environments, the channel capacity and the outage
behavior of such systems need to be investigated based on un-
derground tunnel channel models, which had not been addressed
by the research community yet. In this paper, the capacity
distribution and outage probability of MIMO and cooperative
communication systems are investigated in underground tunnel
environments. Explicit formulas of the capacity distribution and
outage probability are developed as functions of environmental
conditions and system configurations. Based on the capacity
and outage analysis in underground tunnels, the optimal MIMO
antenna geometry design scheme is proposed for MIMO systems;
and the cooperative relay assignment protocol is developed for
cooperative communication systems. Simulations are conducted
to validate the theoretical results.

Index Terms—Underground tunnel, MIMO, cooperative com-
munications, channel capacity, outage behavior, MIMO antenna
geometry, cooperative relay assignment.

I. INTRODUCTION

W IRELESS communication networks and wireless sen-
sor networks are expected to improve the safety and

the productivity/efficiency in underground mine tunnels and
road tunnels [1]. In these wireless networks, high link relia-
bility is required to guarantee the personal and property safety
in the high-risky underground tunnel environments. However,
the link error caused by the multipath fading in underground
tunnels is much more severe than the terrestrial wireless
channels, since the wireless signals are confined to the internal
space of the underground mines and tunnels [2], [3]. Moreover,
the reflections and the diffractions on the obstructions inside
the tunnels create even more severe multipath fading [4], [5].

To solve the unreliable link problem caused by the multipath
fading in underground tunnels, spatial diversity-based tech-
niques including MIMO (Multiple Input Multiple Output) and
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Cooperative Communication system can be utilized. In partic-
ular, the MIMO system employs multiple antenna elements at
both transmitter and receiver to achieve the spatial diversity
[11], which is suitable for large devices such as the base
stations. In contrast, the cooperative communication system
[12] explores the broadcast nature of the wireless channel and
utilize multiple wireless nodes with single antenna to form
a virtual MIMO, which is suitable for small and low-cost
devices such as wireless sensors and handsets.

As the most important criteria in designing MIMO and
cooperative communication systems, the channel capacity and
the outage behavior need to be investigated in underground
tunnel environments. Specifically, according to our previous
research on wireless channels in tunnel environments [2], [3],
[4], [5], the channel characteristics in underground tunnels
are significantly different from the terrestrial channel. First,
due to the reflections on the tunnel walls, the propagation of
electromagnetic (EM) waves form regular patterns (i.e. modes)
in underground tunnels. Each propagation mode has different
field distribution and attenuation rate. The effectiveness of
excitation and reception of those modes are determined by the
position of the transmitter and the receiver [2], [3]. Second,
obstructions with random sizes and positions inside the tunnel,
such as vehicles and machineries, cause additional loss and
coupling of the propagation modes [4], [5]. Since the channel
characteristics have straightforward influences on the channel
capacity, it is necessary to analyze the capacity and outage be-
havior of the MIMO and cooperative communication systems
based on the unique channel model in the underground tunnels,
which have not been addressed by the research community so
far, to the best of our knowledge.

In this paper, the capacity distribution and outage proba-
bility of MIMO and cooperative communication systems in
underground tunnels are investigated. In particular, for MIMO
system in underground tunnels, based on the underground
channel model, we prove that the MIMO capacity in under-
ground tunnels follows either a normal distribution in high
signal-to-noise ratio (SNR) regime or a log-normal distribution
in low SNR regime. The parameters of each distribution are
explicitly provided. The ergodic capacity and outage capacity
of MIMO system are calculated after the capacity distribution
is derived. Then, to maximize the outage capacity, the optimal
MIMO antenna geometry is designed in both high SNR regime
and low SNR regime. For cooperative communication system
in underground tunnels, the outage probability is calculated
by utilizing the tunnel channel model. Then a fully distributed
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optimal relay assignment protocol in underground tunnels is
developed to minimize the outage probability. Finally, the
theoretical analysis is validated by simulations in various
environmental and system conditions.

The remainder of this paper is organized as follows. In
Section II, the related work is introduced. In Section III, the
channel model in underground tunnels is overviewed. Next, in
Section IV, the capacity distribution and the outage capacity
of MIMO system in underground tunnels are analyzed. The
optimal MIMO antenna geometry is then designed based on
the capacity and outage analysis. After that, in Section V, the
outage probability of the cooperative communication system
in underground tunnels are calculated, based on which the
optimal relay assignment assignment protocol is developed.
In Section VI, simulation evaluations are provided. Finally,
the paper is concluded in Section VII.

II. RELATED WORK

In the literature, there are mainly three types of models
to characterize the wireless channel in empty tunnels [6]:
the Geometrical Optical model (GO model) [7], [8], the
Waveguide model [9], and the Full Wave model [10]. The GO
model and the Full Wave model can only provide numerical
results and the computational complexity is high. Although
the waveguide model can provide analytical results, it is only
applicable for the far region of the transmitter in tunnels. In
[3], [2], we have developed the Multimode model that gives
analytical results for both the near region and the far region
in an empty tunnel. Moreover, in [4], [5], we extended the
Multimode model so that the signal propagation in tunnels
with vehicular traffic flow can be analytically modeled.

The MIMO capacity has been widely analyzed in terrestrial
wireless communication systems. In [11] and [13], the MIMO
capacity over the additive Gaussian channel with and without
multipath fading is analyzed. In [14], the effect of MIMO
antenna geometry on capacity is analyzed to mitigate the
impact of the correlated MIMO channel. In [15], it is proved
that the distribution of the MIMO capacity in terrestrial
channel follows a normal distribution. All the above works are
based on the terrestrial wireless channel model that is simpler
and fuzzier than the tunnel channel model in two aspects: 1)
The channel gain of the terrestrial channel is assumed to be
a Rayleigh random variable multiplied by a power function
of the transmission distance. However, the parameters of the
Rayleigh fading cannot be accurately calculated. In contrast,
the channel gain in underground tunnels is a weighted sum
of multiple propagation modes. The intensity and the field
distribution of each mode can be accurately characterized. 2)
In terrestrial channel, each pair of TX and RX antenna ele-
ments in the MIMO system is assumed to have the same mean
channel gain. However, in underground tunnels, the positions
of the transceivers have significant influences on the channel
gain. Hence, the MIMO antenna geometry significantly affects
MIMO channel capacity in tunnels.

In [16], [17], the MIMO capacity in empty waveguide
channels are calculated using the modal expansion technique.
Those existing works on MIMO capacity in tunnels are
based on the empty tunnel channel model. However, in real

underground tunnels, there are a large number of random ob-
structions. The randomness of the MIMO capacity caused by
the obstructions has significant influence on the performance
of the MIMO systems in tunnels. To our best knowledge, the
capacity distribution and the outage behavior of the MIMO
systems in tunnels have not been investigated yet.

The cooperative communication technique has also been
intensively investigated in terrestrial environments recently.
In [18], several efficient cooperative schemes are proposed,
and the corresponding outage behavior in terms of outage
probability are investigated in high SNR regime. In [19],
the outage capacity of cooperative communication system is
calculated in low SNR regime. In [20], a centralized cooper-
ative relay assignment protocol is proposed to maximize the
minimum cooperative capacity in the whole network. In [21], a
distributed relay assignment protocols are proposed. However,
it still requires the information exchanges among the source
node, relay nodes and destination node, which is difficult to
achieve in networks with high dynamic topology, such as
the vehicular networks in road tunnels. In [22], a nearest
neighbor relay assignment protocol is proposed based on the
analysis on the outage probability, which is fully distributed
and only requires the local position information. Similar to
the existing works on MIMO system, the above works on
cooperative communications are also based on the terrestrial
wireless channel. Currently, there is no existing paper on either
the outage analysis or the relay assignment for cooperative
communications in underground tunnels.

In this paper, we analyze the capacity distribution and
outage behavior of the MIMO and cooperative communication
system in underground tunnels. Then, based on the capacity
and outage analysis, the optimal MIMO antenna geometry and
the optimal cooperative relay assignment protocol are devel-
oped for wireless communications in underground tunnels.

III. CHANNEL MODEL IN UNDERGROUND TUNNELS

A. Channel Model for Empty Tunnels

Multiple modes propagate simultaneously in empty tunnels.
The tunnel cross section is treated as an equivalent rectangular
with a width of 2𝑎 m and a height of 2𝑏 m. A Cartesian
coordinate system is set with its origin located at the center
of the rectangle tunnel, as shown in Fig. 1. By solving
Maxwell’s equations using the boundary conditions, multiple
solutions of the EM field distribution in the tunnel can be
derived. Each solution refers to a propagation mode and has
different EM field distribution and attenuation rate [9]. The
EM field distribution of each mode in the tunnel cross section
is characterized by its eigenfunction [3]:

𝐸𝑒𝑖𝑔𝑛
𝑚𝑛,(𝑥,𝑦)≃sin

(𝑚𝜋
2𝑎

𝑥+𝜑𝑥

)
⋅cos

(𝑛𝜋
2𝑏
𝑦+𝜑𝑦

)
, (1)

where 𝑥 and 𝑦 are the position coordinates in the tunnel cross
section; 𝜑𝑥 = 0 if 𝑚 is even; 𝜑𝑥 = 𝜋

2 if 𝑚 is odd; 𝜑𝑦 = 0
if 𝑛 is odd; 𝜑𝑦 = 𝜋

2 if 𝑛 is even; 𝑚 and 𝑛 indicate the mode
order, where lower order modes have lower attenuation rates.
The intensity of each mode can be derived by a mode matching
technique given in [3]. Let N𝑚𝑜𝑑𝑒 be the set of modes that
have significant energy, N𝑚𝑜𝑑𝑒 = {(𝑚,𝑛)}, ∣N𝑚𝑜𝑑𝑒∣ = 𝑁 .
The channel gain ℎ𝑖𝑗 between receiver 𝑖 and transmitter 𝑗
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Fig. 1. Tunnel environment.

inside the tunnel can be obtained by summing up the gains of
all significant modes at receiver’s position [3]:

ℎ𝑖𝑗 =
√
𝐺𝑡𝐺𝑟 ⋅

∑
(𝑚,𝑛)∈N𝑚𝑜𝑑𝑒

𝐸𝑒𝑖𝑔𝑛
𝑚𝑛,(𝑥𝑖,𝑦𝑖)

⋅ 𝐶𝑇𝑋

𝑚𝑛,𝑗 ⋅ 𝑒−Γ𝑚𝑛⋅𝑧𝑟 , (2)

where 𝑧𝑟 is the distance between the transmitter and the
receiver; (𝑥𝑖, 𝑦𝑖) is the coordinates on the tunnel cross section
of the receiver 𝑖; 𝐺𝑡 and 𝐺𝑟 are the TX and RX antenna gain,
respectively; Γ𝑚𝑛 is the attenuation coefficient of the 𝐸𝐻𝑚𝑛

mode (the detailed expression of Γ𝑚𝑛 can be found in [2],
[3]); 𝐸𝑒𝑖𝑔𝑛

𝑚𝑛,(𝑥,𝑦) is the eigenfunction given in (1); 𝐶
𝑇𝑋

𝑚𝑛,𝑗 is the
intensity of the 𝐸𝐻𝑚𝑛 mode near the transmitter 𝑗, which is
located at (𝑥𝑗 , 𝑦𝑗). 𝐶

𝑇𝑋

𝑚𝑛,𝑗 is derived in [3], which is:

𝐶
𝑇𝑋

𝑚𝑛,𝑗 =
𝜋

𝑎𝑏
√

1−(𝑚𝜋2𝑎𝑘 )2−( 𝑛𝜋2𝑏𝑘 )2
⋅𝐸𝑒𝑖𝑔𝑛

𝑚𝑛,(𝑥𝑗,𝑦𝑗)
, (3)

where 𝑘 is the wave number.

B. Channel Model for Tunnels with Obstructions

Actual tunnels are filled with obstructions with different
sizes and positions. Since small obstructions do not have
significant influence on the signal propagation in tunnels, the
obstructions considered here are refereed to traffic flow of
vehicles or machineries inside the tunnels. In [4], [5], we
have theoretically modeled the influence of the traffic flow in
tunnels. Consider that a traffic flow with 𝑀 vehicles between
the transceivers in the tunnel, as shown in Fig. 1. The position
and size of the 𝑘𝑡ℎ vehicle are (𝑥𝑘𝑣 , 𝑧

𝑘
𝑣 ) and (𝑤𝑘, ℎ𝑘, 𝑙𝑘),

respectively. According to US Federal Regulations, the width
𝑤𝑘, height ℎ𝑘 and length 𝑙𝑘 of most vehicles (including cars,
vans, buses and trucks) fall into the following intervals (unit
is meter): 𝑤𝑘 ∈ [1.5, 2.5], ℎ𝑘 ∈ [1.3, 4.2], and 𝑙𝑘 ∈ [3.5, 16.2].

The transmitter is located at 𝑧0 = 0 m and the receiver
is located at 𝑧𝑟. According to [4], [5], the channel gain ℎ𝑖𝑗
between transmitter 𝑗 and receiver 𝑖 can be expressed as

ℎ𝑖𝑗=
√
𝐺𝑡𝐺𝑟 ⋅E𝑒𝑖𝑔𝑛

(𝑥𝑖,𝑦𝑖)
⋅A(𝑧𝑟−𝑧𝑀)⋅

𝑀∏
𝑘=1

[
B𝑘⋅A(𝑧𝑘−𝑧𝑘−1)

]
⋅C𝑇𝑋

(𝑥𝑗,𝑦𝑗)
, (4)

where E𝑒𝑖𝑔𝑛
(𝑥𝑖𝑦𝑖)

is the eigenfunction vector at (𝑥𝑖, 𝑦𝑖, 𝑧𝑟); and

C
𝑇𝑋

(𝑥𝑗𝑦𝑗)
is the mode intensity vector at (𝑥𝑗 , 𝑦𝑗, 𝑧0):

E𝑒𝑖𝑔𝑛
(𝑥𝑖𝑦𝑖)

=
[
𝐸𝑒𝑖𝑔𝑛

1,(𝑥𝑖,𝑦𝑖)
, 𝐸𝑒𝑖𝑔𝑛

2,(𝑥𝑖,𝑦𝑖)
, ⋅ ⋅ ⋅𝐸𝑒𝑖𝑔𝑛

𝑁,(𝑥𝑖,𝑦𝑖)

]
,

C𝑇𝑋
(𝑥𝑗𝑦𝑗)

=
[
𝐶𝑇𝑋

1,(𝑥𝑗,𝑦𝑗)
, 𝐶𝑇𝑋

2,(𝑥𝑗,𝑦𝑗)
, ⋅ ⋅ ⋅𝐶𝑇𝑋

𝑁,(𝑥𝑗,𝑦𝑗)

]
. (5)

A(𝑧) is the 𝑁×𝑁 attenuation matrix of transmitting all the 𝑁
modes for 𝑧 meters in an empty tunnel; and B𝑘 is the 𝑁 ×𝑁

influence matrix caused by the 𝑘𝑡ℎ vehicle in the traffic flow:

A(𝑧) =

⎛
⎜⎜⎜⎝
𝑒−Γ1⋅𝑧 0 ⋅ ⋅ ⋅ 0

0 𝑒−Γ2⋅𝑧 ⋅ ⋅ ⋅ 0
...

. . .
...

0 0 ⋅ ⋅ ⋅ 𝑒−Γ𝑁 ⋅𝑧

⎞
⎟⎟⎟⎠ ,

B𝑘 =

⎛
⎜⎜⎜⎝

1 − 𝐿𝑘1 𝐵𝑘𝑙
2→1 ⋅ ⋅ ⋅ 𝐵𝑘

𝑁→1

𝐵𝑘
1→2 1 − 𝐿𝑘2 ⋅ ⋅ ⋅ 𝐵𝑘

𝑁→2
...

...
. . .

...
𝐵𝑘

1→𝑁 𝐵𝑘
2→𝑁 ⋅ ⋅ ⋅ 1 − 𝐿𝑘𝑁

⎞
⎟⎟⎟⎠ ; (6)

where 𝐿𝑘𝑚𝑛 on the diagonal of B𝑘 is the additional loss of the
𝐸𝐻𝑚𝑛 mode caused by the 𝑘𝑡ℎ vehicle in the traffic flow:

𝐿𝑘𝑚𝑛 =
1

4𝑎𝑏

[
𝑤𝑘 − 2𝑎

𝑚𝜋
(−1)𝑚 cos(

𝑚𝜋

𝑎
𝑥𝑘𝑣) sin(

𝑚𝜋

𝑎
𝑤𝑘)
]

⋅
[
ℎ𝑘 − 𝑏

𝑛𝜋
sin(

𝑛𝜋

𝑏
ℎ𝑘)
]
. (7)

The other elements in B𝑘, i.e. 𝐵𝑘
𝑚𝑛→𝑠𝑡, are the mode coupling

coefficients. According to [4], [5], the influence matrix B𝑘 can
be approximately viewed as a diagonal matrix since the mode
coupling influence is very small. Then the channel gain ℎ𝑖𝑗 in
(4) can be simplified as

ℎ𝑖𝑗 =
√
𝐺𝑡𝐺𝑟 ⋅E𝑒𝑖𝑔𝑛

(𝑥𝑖,𝑦𝑖)
⋅D𝑀

𝑧𝑟 ⋅C
𝑇𝑋

(𝑥𝑗,𝑦𝑗)
, (8)

where D
𝑀

𝑧𝑟 is the propagation matrix given by

D
𝑀

𝑧𝑟=

⎛
⎜⎜⎝
𝑒−Γ1⋅𝑧𝑟⋅∏𝑀

𝑘=1
(1−𝐿𝑘1) ⋅ ⋅ ⋅ 0

...
. . .

...

0 ⋅ ⋅ ⋅ 𝑒−Γ𝑁⋅𝑧𝑟⋅∏𝑀

𝑘=1
(1−𝐿𝑘𝑁)

⎞
⎟⎟⎠ . (9)

IV. CAPACITY AND OUTAGE BEHAVIOR OF MIMO
SYSTEMS IN UNDERGROUND TUNNELS

In this section, the capacity and the outage behavior of
the MIMO systems are investigated based on the tunnel
channel model given in Section III. Explicit formulas of
capacity probability density function (PDF), ergodic capacity,
and outage capacity are developed. Based on the analysis,
an outage-optimal MIMO antenna geometry design scheme
is developed to maximize the MIMO outage capacity.

A. MIMO Capacity in Underground Tunnels

We consider a narrowband channel with 𝑝 transmitting and 𝑞
receiving antenna elements. The complex channel gain matrix
H is a 𝑞 × 𝑝 matrix [ℎ𝑖𝑗 ]𝑞×𝑝. The matrix element ℎ𝑖𝑗 is the
channel gain between RX antenna 𝑖 and TX antenna 𝑗, which
is given in (8). We assume that the transmitter does not have
the channel state information (CSI). Hence, equal power is
allocated to each TX antenna. The MIMO capacity with equal
power allocation is given by [11]

ℂ
𝑀𝐼𝑀𝑂

=𝐸
[

log det
(
I𝑞×𝑞 + 𝜌/𝑝 ⋅H ⋅H∗)] , (10)

where 𝜌 is the signal to noise ratio (SNR) at the transmitter,
and 𝜌 = 𝑃𝑡𝑜𝑡

𝑁0
, where 𝑃𝑡𝑜𝑡 is the total transmission power of

all TX antenna elements; 𝑁0 is the noise power. The channel
gain matrix H can be derived from (8):

H =
√
𝐺𝑡𝐺𝑟 ⋅E𝑅𝑋 ⋅D𝑀

𝑧𝑟 ⋅C𝑇𝑋 , (11)
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where D𝑀 (𝑧𝑟) is the propagation matrix defined in (9); E𝑅𝑋

is the mode eigenfunction matrix at RX side; and C𝑇𝑋 is the
mode intensity matrix at TX side:

E𝑅𝑋=

⎛
⎜⎜⎜⎜⎝
𝐸𝑒𝑖𝑔𝑛

1,(𝑥1,𝑦1)
𝐸𝑒𝑖𝑔𝑛

2,(𝑥1,𝑦1)
⋅ ⋅ ⋅ 𝐸𝑒𝑖𝑔𝑛

𝑁,(𝑥1,𝑦1)

𝐸𝑒𝑖𝑔𝑛
1,(𝑥2,𝑦2)

𝐸𝑒𝑖𝑔𝑛
2,(𝑥2,𝑦2)

⋅ ⋅ ⋅ 𝐸𝑒𝑖𝑔𝑛
𝑁,(𝑥2,𝑦2)

...
...

. . .
...

𝐸𝑒𝑖𝑔𝑛
1,(𝑥𝑞,𝑦𝑞)

𝐸𝑒𝑖𝑔𝑛
2,(𝑥𝑞,𝑦𝑞)

⋅ ⋅ ⋅ 𝐸𝑒𝑖𝑔𝑛
𝑁,(𝑥𝑞,𝑦𝑞)

⎞
⎟⎟⎟⎟⎠ ,

C𝑇𝑋=

⎛
⎜⎜⎜⎜⎝
𝐶𝑇𝑋

1,(𝑥1,𝑦1)
𝐶𝑇𝑋

1,(𝑥2,𝑦2)
⋅ ⋅ ⋅ 𝐶𝑇𝑋

1,(𝑥𝑝,𝑦𝑝)

𝐶𝑇𝑋
2,(𝑥1,𝑦1)

𝐶𝑇𝑋
2,(𝑥2,𝑦2)

⋅ ⋅ ⋅ 𝐶𝑇𝑋
2,(𝑥𝑝,𝑦𝑝)

...
...

. . .
...

𝐶𝑇𝑋
𝑁,(𝑥1,𝑦1)

𝐶𝑇𝑋
𝑁,(𝑥2,𝑦2)

⋅ ⋅ ⋅ 𝐶𝑇𝑋
𝑁,(𝑥𝑝,𝑦𝑝)

⎞
⎟⎟⎟⎟⎠. (12)

Substitute (11) into (10) and let 𝐺𝑡 = 𝐺𝑟 = 1 for brevity,
the MIMO capacity ℂ𝑀𝐼𝑀𝑂 becomes:

ℂ𝑀𝐼𝑀𝑂=logdet
(
I𝑞×𝑞+

𝜌

𝑝
E𝑅𝑋⋅D𝑀

𝑧𝑟⋅C𝑇𝑋⋅C𝑇𝑋∗⋅D𝑀∗
𝑧𝑟 ⋅E𝑅𝑋∗

)
. (13)

Since det(I+AB)=det(I+BA) [25],

ℂ
𝑀𝐼𝑀𝑂

=logdet
[
I𝑁×𝑁+

𝜌

𝑝
(E𝑅𝑋∗E𝑅𝑋)⋅D𝑀

𝑧𝑟⋅(C𝑇𝑋C𝑇𝑋∗)⋅D𝑀∗
𝑧𝑟

]
. (14)

It is difficult to derive the exactly PDF of the capacity
in (14). However, approximate results can be derived if we
assume the SNR at the receiver is either high or low enough.

1) High SNR Regime Analysis:
Theorem 1: In the high SNR regime, the MIMO capacity

in underground tunnels follows a normal distribution.
Proof: As discussed in Section III, only modes that have

significant energy need to be considered. Consequently, all
the elements on the diagonal of the mode propagation matrix
D

𝑀

𝑧𝑟 is not trivial. Moreocer, in high SNR regime analysis, we
assume that the number of TX antenna elements 𝑝 and RX
antenna elements 𝑞 are larger than the number of significant
modes 𝑁 (i.e. 𝑝 ≥ 𝑁 and 𝑞 ≥ 𝑁 ). Then D

𝑀

𝑧𝑟 , C𝑇𝑋 and
E𝑅𝑋 are all 𝑁 × 𝑁 full-rank matrix. If the SNR at the RX
side is high enough, then the MIMO capacity in (14) can be
approximated as

ℂ
ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
≃∑𝑁

𝑙=1 log
(
𝜌⋅∣∣𝑒−Γ𝑙⋅𝑧𝑟 ⋅∏𝑀

𝑘=1(1−𝐿𝑘𝑙 )
∣∣2) (15)

+ log det
(
E𝑅𝑋∗E𝑅𝑋

)
+ log det

(
1
𝑝C

𝑇𝑋C𝑇𝑋∗
)
.

The last two terms in (15) are determined by the geometry
of the RX and TX antenna elements, respectively. The first
term in (15) is the sum of the capacities of 𝑁 sub-channels.
Each sub-channel refers to a propagation mode. The capacity
of each sub-channel is governed by the tunnel size and the
vehicular traffic flow. Since the number, positions, and sizes
of the vehicles between the transceivers are random, the
capacities of each sub channels are also random. The first
term in (15) can be further developed as∑𝑁

𝑙=1 log
(
𝜌⋅
∣∣∣𝑒−Γ𝑙⋅𝑧𝑟 ⋅∏𝑀

𝑘=1(1−𝐿𝑘𝑙 )
∣∣∣2) (16)

=
∑𝑁

𝑙=1

(
log 𝜌 + 2 log

∣∣𝑒−Γ𝑙⋅𝑧𝑟 ∣∣)+
∑𝑁

𝑙=1

∑𝑀
𝑘=1 2 log(1−𝐿𝑘𝑙 ).

The first sum in (16) is determined by the SNR and the
mode attenuation coefficients, which are constants after the
communication starts. The second sum in (16) is determined

by the traffic flow of random vehicles. The additional loss pa-
rameters {𝐿𝑘𝑙 , 𝑘 = 1, 2, ...𝑀 ; 𝑙 = 1, 2, ...𝑁} are independent
random variables. Since the tunnel is considered to be long,
we assume that the number of vehicles 𝑀 is correspondingly
large. Therefore, the second sum in (16) can be viewed as
the sum of a sufficiently large number of independent random
variables, each with finite mean and variance. According to
the central limit theorem and Lindeberg’s condition [26], the
second sum in (16) are approximately normally distributed.
Then the MIMO capacity in (15) is actually the sum of
a normal distributed random variable and several constants.
Therefore, the MIMO capacity in high SNR regime follows a
normal distribution, which completes the proof.

Since the normal distribution can be completely character-
ized by its first two moments, we calculate mean and variance
of the MIMO capacity in the rest part of this subsection.

Substituting (16) into (15) and calculating the mean yield:

𝐸[ℂ
ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]=
∑𝑁
𝑙=1

(
log𝜌+2log

∣∣𝑒−Γ𝑙⋅𝑧𝑟∣∣)+logdet
(
E𝑅𝑋∗E𝑅𝑋

)
(17)

+logdet
(
1
𝑝C

𝑇𝑋C𝑇𝑋∗
)
+𝐸
[∑𝑁

𝑙=1

∑𝑀
𝑘=12log(1−𝐿𝑘𝑙 )

]
.

In tunnels, vehicular traffic flow can be modeled as a
Poisson flow [27]. If the distance between the transceivers
is 𝑧𝑟, the probability that the number of vehicles 𝑀 = 𝑚 is:

𝑃 (𝑀 = 𝑚) =
(
𝜆
𝑧𝑟
𝑣

)𝑚
⋅ 1

𝑚!
⋅ 𝑒−𝜆 𝑧𝑟𝑣 , (18)

where 𝜆 is the average rate of vehicle arrival (vehicles/sec) in
the tunnel; and 𝑣 is the average velocity of the vehicles. Then
the last term in (17) can be further developed as

𝐸
[∑𝑁

𝑙=1

∑𝑀
𝑘=1 2 log(1−𝐿𝑘𝑙 )

]
(19)

=
∑∞

𝑚=0

{
𝑃 (𝑀=𝑚)⋅∑𝑚

𝑘=1 𝐸
[∑𝑁

𝑙=1 2 log(1−𝐿𝑘𝑙 )
]}
.

Every vehicle runs in one of the 𝐿 lanes in the tunnel.
Hence, the x-coordinate of the 𝑖𝑡ℎ vehicles 𝑥𝑖𝑣 belongs to
{𝑎(1+2𝑙

𝐿 − 1)∣𝑙 = 0, 1, . . . 𝐿−1}. The x-coordinate of the
vehicle obeys uniform distribution with the probability 1/𝐿.
The size of the vehicles are also assumed to have the uniform
distribution in the size interval defined in Section III. Then
the expectations 𝐸[

∑𝑁
𝑙=1 2 log(1−𝐿𝑘𝑙 )] in (19) are the same

for all 𝑘 ∈ {1, 2, ...𝑀}. Thus, we denote:

𝜇
𝐿

= 𝐸
[∑𝑁

𝑙=1 2 log(1−𝐿𝑘𝑙 )
]
, (20)

which can be calculated by (7). Substituting (18) and (20) into
(19) yields

𝐸
[∑𝑁

𝑙=1

∑𝑀
𝑘=1 2 log(1−𝐿𝑘𝑙 )

]
=
∑∞

𝑚=0

(
𝜆 𝑧𝑟𝑣
)𝑚⋅ 1

𝑚! ⋅ 𝑒−𝜆
𝑧𝑟
𝑣 ⋅𝑚⋅𝜇

𝐿

= 𝜆 ⋅ 𝑧𝑟
𝑣

⋅ 𝜇𝐿 . (21)

Substituting (21) into (17) yields the mean (ergodic) MIMO
capacity in high SNR regime:

𝐸[ℂ
ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]=
∑𝑁

𝑙=1

(
log𝜌+2log

∣∣𝑒−Γ𝑙⋅𝑧𝑟∣∣)+logdet
(
E𝑅𝑋∗E𝑅𝑋

)
+logdet

(
1
𝑝C

𝑇𝑋C𝑇𝑋∗
)

+𝜆 𝑧𝑟𝑣 𝜇𝐿 , (22)
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The variance of the MIMO capacity in high SNR regime
can be calculated in the similar way:

𝑉 𝑎𝑟[ℂ
ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]=𝜆 ⋅ 𝑧𝑟

𝑣
⋅ 𝜎2

𝐿
, (23)

wehre 𝜎2
𝐿

= 𝑉 𝑎𝑟
[∑𝑁

𝑙=1 2 log(1−𝐿𝑘𝑙 )
]
. Note that 𝜎2

𝐿
can also

be calculated using (7). After the mean and variance of the
MIMO capacity are given, the capacity distribution in high
SNR regime is completely characterized.

Corollary 1: In the high SNR regime, the 𝜖-outage capacity
of the MIMO systems in underground tunnels is given by

Outage𝜖[ℂ
ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]=𝐸[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]+erf−1(2𝜖−1)⋅

√
2𝑉𝑎𝑟[ℂℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
] , (24)

where erf−1(𝑥) is the inverse function of the error function
erf(𝑥); 𝐸[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
] and 𝑉𝑎𝑟[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
] are given by (22) and (23),

respectively.
Proof: According to Theorem 1, the MIMO capac-

ity in high SNR regime follows the normal distribution
𝒩 (𝐸[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
], 𝑉𝑎𝑟[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]). Since the 𝜖-outage capacity is the

capacity guaranteed for (1−𝜖) of the channel realizations, we
have

𝜖 = 𝑃𝒩
(
ℂ
ℎ𝑖𝑔ℎ
𝑀𝐼𝑀𝑂 < Outage𝜖[ℂ

ℎ𝑖𝑔ℎ
𝑀𝐼𝑀𝑂]

)
(25)

=
1

2

[
1 + erf

(
Outage𝜖[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
] − 𝐸[ℂ

ℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]√

2𝑉𝑎𝑟[ℂℎ𝑖𝑔ℎ

𝑀𝐼𝑀𝑂
]

)]
,

Corollary 1 can be calculated by (25).
2) Low SNR Regime Analysis:
Theorem 2: In the low SNR regime, the MIMO capacity in

underground tunnels follows a lognormal distribution.
Proof: For brevity, we first use a simple matrix to denote

the product of matrixes in (14):

G
def
=
𝜌

𝑝
(E𝑅𝑋∗E𝑅𝑋)⋅D𝑀

𝑧𝑟⋅(C𝑇𝑋C𝑇𝑋∗)⋅D𝑀∗
𝑧𝑟 . (26)

According to the relationship between matrix determinant and
matrix trace [25], (14) can be further developed as

ℂ
𝑀𝐼𝑀𝑂

=log det(I + G)=log
(
exp
{
tr[log(I+G)]

})
=log

{ ∞∑
𝑘=0

1

𝑘!

[
−

∞∑
𝑗=1

(−1)𝑗

𝑗!
tr(G𝑗)

]𝑘}
, (27)

where tr(X) is the trace of the matrix X. In low SNR regime,

∣tr(G)∣≫∣ (−1)𝑗

𝑗!
tr(G𝑗)∣ and ∣tr(G)∣≫∣ 1

𝑘!
[−tr(G)]𝑘∣ . (28)

Substituting (28) into (27) yields

ℂ
𝑙𝑜𝑤
𝑀𝐼𝑀𝑂

≃ log
[
1+tr(G)

]≃ tr(G)⋅log 𝑒 (29)

=
𝜌

𝑝
log 𝑒⋅

𝑝∑
𝑗=1

𝑞∑
𝑖=1

∣∣∣∣
𝑁∑
𝑙=1

[
𝐸𝑒𝑖𝑔𝑛
𝑙,(𝑥𝑖,𝑦𝑖)

⋅𝐶𝑇𝑋

𝑙,𝑗 ⋅𝑒−Γ𝑙⋅𝑧𝑟 ⋅
𝑀∏
𝑘=1

(1−𝐿𝑘𝑙 )
]∣∣∣∣
2

.

For brevity, we denote 𝑓𝑙,𝑖,𝑗
def
= 𝐸𝑒𝑖𝑔𝑛

𝑙,(𝑥𝑖,𝑦𝑖)
⋅𝐶𝑇𝑋

𝑙,𝑗 ⋅𝑒−Γ𝑙⋅𝑧𝑟 . Then

∣∣∣∣
𝑁∑
𝑙=1

[
𝐸𝑒𝑖𝑔𝑛
𝑙,(𝑥𝑖,𝑦𝑖)

⋅𝐶𝑇𝑋

𝑙,𝑗⋅𝑒−Γ𝑙⋅𝑧𝑟⋅
𝑀∏
𝑘=1

(1−𝐿𝑘𝑙)
]∣∣∣∣
2

(30)

=

∣∣∣∣
𝑁∑
𝑙=1

{[
Re(𝑓𝑙,𝑖,𝑗)+𝑗 ⋅Im(𝑓𝑙,𝑖,𝑗)

]⋅𝑀∏
𝑘=1

(1−𝐿𝑘𝑙 )
}∣∣∣∣

2

=𝑋1
2+𝑋2

2 ,

where

𝑋1=

∣∣∣∣∣
𝑁∑
𝑙=1

[
Re(𝑓𝑙,𝑖,𝑗)⋅

𝑀∏
𝑘=1

(1−𝐿𝑘𝑙 )
]∣∣∣∣∣;𝑋2=

∣∣∣∣∣
𝑁∑
𝑙=1

[
Im(𝑓𝑙,𝑖,𝑗)⋅

𝑀∏
𝑘=1

(1−𝐿𝑘𝑙 )
]∣∣∣∣∣.

(31)

where Re(𝑥) and Im(𝑥) denote the real and imaginary part of
the complex value 𝑥, respectively;

Again, we assume that the number of vehicles 𝑀 is large
enough so that

∏𝑀
𝑘=1(1−𝐿𝑘𝑙 ) can be viewed as the product of a

sufficiently large number of independent and positive random
variables. According to the central limit theorem [26],

∏𝑀
𝑘=1(1−

𝐿𝑘𝑙 ) in (31) approximately follow log-normal distributions.𝑋1

and 𝑋2 shown in (31) are the absolute values of two weighted
sums of the log-normal variables

∏𝑀
𝑘=1(1−𝐿𝑘𝑙 ), respectively.

According to [24], it has been well recognized that the sum
of log-normal random variables can be well approximated by
a new lognormal variable. It can be proved that this result also
applies to the absolute values of the weighted sums of log-
normal variables. Therefore, 𝑋1 and 𝑋2 are also log-normal
variables. Moreover, based on the definition of the log-normal
distribution, it is easy to prove that the square of a log-normal
variable is also a log-normal variable. As a result, 𝑋1

2 and
𝑋2

2 follow the log-normal distribution. The MIMO capacity
shown in (27) is the sum of the log-normal variables given
in (30). Therefore, the MIMO capacity in low SNR regime
follows a log-normal distribution.

Substitute (30) into (29) and calculate the mean value, we
derive

ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
=
𝜌

𝑝
log 𝑒⋅

𝑝∑
𝑗=1

𝑞∑
𝑖=1

(𝑋1
2 +𝑋2

2) . (32)

According to the proof of Theorem 2, 𝑋1
2 and 𝑋2

2 are
log-normal variables. The mean (or variance) of the sum of
the log-normal variable can be approximated calculated by the
sum of the mean (or variance) of each addend variable [24].
Therefore,

𝐸[ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
]=

𝜌

𝑝
log 𝑒⋅

𝑝∑
𝑗=1

𝑞∑
𝑖=1

(
𝐸[𝑋1

2] + 𝐸[𝑋2
2]
)
, (33)

𝑉𝑎𝑟[ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
]≃(

𝜌

𝑝
log 𝑒)2 ⋅

𝑝∑
𝑗=1

𝑞∑
𝑖=1

(
𝑉𝑎𝑟[𝑋1

2]+𝑉𝑎𝑟[𝑋2
2]
)
,

(34)

In the following, we show the detailed calculating process
of 𝐸[𝑋1

2] and 𝑉𝑎𝑟[𝑋1
2], while 𝐸[𝑋2

2] and 𝑉𝑎𝑟[𝑋2
2] can be

easily derived by exchanging Re(𝑓𝑙,𝑖,𝑗) with Im(𝑓𝑙,𝑖,𝑗).
According to [23], the mean and variance of the square of a

log-normal variable can be expressed as functions of the mean
and variance of the log-normal variable. Then we have:

𝐸[𝑋1
2] = 𝐸2[𝑋1] + 𝑉𝑎𝑟[𝑋1] ,

𝑉𝑎𝑟[𝑋1
2]=
(
𝐸2[𝑋1]+𝑉𝑎𝑟[𝑋1]

)2[
(1+

𝑉𝑎𝑟[𝑋1]

𝐸2[𝑋1]
)4−1

]
, (35)

Next we calculate the mean and variance of lognormal
variable 𝑋1:

𝐸[𝑋1]=
∣∣∣∑𝑁

𝑙=1

{
Re(𝑓𝑙,𝑖,𝑗)⋅𝐸

[∏𝑀
𝑘=1(1−𝐿𝑘𝑙 )

]}∣∣∣ ,
𝑉𝑎𝑟[𝑋1]≃∑𝑁

𝑙=1

{
Re2(𝑓𝑙,𝑖,𝑗)⋅𝑉𝑎𝑟

[∏𝑀
𝑘=1(1−𝐿𝑘𝑙 )

]}
, (36)
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We first calculate 𝐸[𝑋1] in (36), where

𝐸
[∏𝑀

𝑘=1(1−𝐿𝑘𝑙 )
]

=
∑∞

𝑚=1𝑃 (𝑀=𝑚)⋅𝐸[∏𝑚
𝑘=1(1−𝐿𝑘𝑙 )

]
. (37)

Since the positions and the sizes of the vehicles have
independent and identical distributions,

𝐸
[∏𝑚

𝑘=1(1−𝐿𝑘𝑙 )
]
=
∏𝑚
𝑘=1𝐸

[
1−𝐿𝑘𝑙

]
=𝐸𝑚

[
1−𝐿𝑘𝑙

] def
= 𝜇𝑙

𝑚 , (38)

where 𝐸
[
1−𝐿𝑘𝑙

]
is calculate by (7), which is denoted by 𝜇𝑙

for brevity. Substituting (18), (37), and (38) into (36) yields:

𝐸[𝑋1] =
∣∣∣∑𝑁

𝑙=1

{
Re(𝑓𝑙,𝑖,𝑗)⋅𝑒𝜆 𝑧𝑟𝑣 (𝜇𝑙−1)

}∣∣∣ . (39)

Similarly, we can derive

𝑉𝑎𝑟[𝑋1]≃
𝑁∑
𝑙=1

{
Re2(𝑓𝑙,𝑖,𝑗)⋅

[
𝑒𝜆

𝑧𝑟
𝑣 (𝜇𝑙

2+𝜎2
𝑙−1)−𝑒𝜆𝑧𝑟𝑣 (𝜇𝑙2−1)

]}
. (40)

where 𝜇𝑙 is defined in (38); we use 𝜎2
𝑙 to denote 𝑉𝑎𝑟

[
1−𝐿𝑘𝑙

]
for brevity.

By substituting (35), (39), (40) into (33) and (34), we can
calculate the mean (ergodic capacity) and variance of the
MIMO capacity in low SNR regime. Then the outage capacity
of the MIMO systems in low SNR regime can be calculated
based on the following corollary.

Corollary 2: In the low SNR regime, the 𝜖-outage capacity
of the MIMO systems in underground tunnels is given by

Outage𝜖[ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
] =

𝐸[ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
]√

𝜅
⋅ 𝑒erf−1(2𝜖−1)⋅√2 ln𝜅 , (41)

where 𝜅 = 1 +
𝑉𝑎𝑟[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
]

𝐸2[ℂ𝑙𝑜𝑤
𝑀𝐼𝑀𝑂

]
; 𝐸[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
] and 𝑉 𝑎𝑟[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
] are

calculated in the above analysis.
Proof: According to Theorem 2, the MIMO capacity in

low SNR regime follows the log-normal distribution. Hence,

𝜖 = 𝑃 log-𝒩
(
ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
< Outage𝜖[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
]
)

= 1
2

[
1 + erf

(
lnOutage𝜖[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
]−ln

𝐸[ℂ𝑙𝑜𝑤
𝑀𝐼𝑀𝑂

]
√
𝜅√

2 ln𝜅

)]
, (42)

Corollary 2 can be derived from (42).

B. MIMO Antenna Geometry Design Scheme

So far the MIMO capacity in underground tunnels are
thoroughly analyzed. In this subsection, the optimal MIMO
antenna geometry is designed to maximize the outage capacity.
Since the MIMO capacity in tunnels have different attributes
in high SNR and low SNR regime, in this subsection, we
first develop the optimal MIMO antenna geometry in high
SNR regimes. Then this optimal MIMO antenna geometry is
modified to fit the attributes in the low SNR regime.

1) MIMO Antenna Geometry in High SNR Regime: In (24),
the high SNR 𝜖-outage capacity is determined by the mean and
variance of the high SNR MIMO capacity. According to (22)
and (23), the TX and RX antenna geometries can only affect
the mean capacity in (22) but have no effect on the capacity
variance in (23). As a result, in high SNR regime, to maximize
the 𝜖-outage capacity is equal to maximize the mean capacity.
Hence, in the next step, we design the TX and RX antenna
geometry to maximize the mean capacity given in (22).

The first term and the last term in (22) are determined
by the tunnel size and the vehicular traffic flow between the
transceivers, which are not affected by the TX and RX antenna
geometry. The optimal antenna geometries are expected to
maximize the second and third term in (22). It is equal to
maximize det(E𝑅𝑋∗E𝑅𝑋) by selecting optimal RX antenna
geometry, and to maximize det( 1

𝑝C
𝑇𝑋C𝑇𝑋∗) by selecting

optimal TX antenna geometry.
According to (1), the eigenfunctions of different modes are

orthogonal to each other:∫ 𝑎

−𝑎

∫ 𝑏

−𝑏
𝐸𝑒𝑖𝑔𝑛
𝑖,(𝑥,𝑦) ⋅𝐸𝑒𝑖𝑔𝑛∗

𝑗,(𝑥,𝑦) 𝑑𝑥 𝑑𝑦 ≃
{
𝑎𝑏, if 𝑖 = 𝑗

0, otherwise
(43)

At RX side, the matrix E𝑅𝑋∗E𝑅𝑋 is in fact the covariance
matrix of the eigenfunctions of all significant modes at the
positions of the RX antenna elements. Due to the mode
orthogonality, det(E𝑅𝑋∗E𝑅𝑋) is maximized if E𝑅𝑋∗E𝑅𝑋 is
diagonal. If the RX antenna elements are placed at all the
positions where the eigenfunctions of significant modes have
extrema values, the matrix E𝑅𝑋⋅E𝑅𝑋∗ can be approximately
diagonalized. The maximum value of det(E𝑅𝑋∗E𝑅𝑋) is

max
{

det(E𝑅𝑋∗E𝑅𝑋)
} ≃

𝑁∏
𝑖=1

[
𝑞∑
𝑖=1

∣𝐸𝑒𝑖𝑔𝑛
𝑖,(𝑥,𝑦)∣2

]
≃ 𝑞𝑁 . (44)

At TX side, we first check the mode intensity 𝐶𝑇𝑋
𝑚𝑛,𝑗 given

in (3). Since
√

1−(𝑚𝜋2𝑎𝑘 )2−( 𝑛𝜋2𝑏𝑘 )2 ≃ 1 for low order modes
(i.e. the significant modes considered in this paper), 𝐶𝑇𝑋

𝑚𝑛,𝑗

approximately equals to the mode eigenfunction multiplied by
a constant. Hence, the matrix C𝑇𝑋C𝑇𝑋∗ can also be viewed as
the covariance matrix of the eigenfunctions of all significant
modes at the positions of the TX antenna elements. Therefore,
in high SNR regime, the optimal TX antenna shares the
same geometry as the optimal RX antenna geometry, where
antenna elements are placed at all the positions where the
eigenfunctions of significant modes have extrema values. And

max
{
det(

1

𝑝
C𝑇𝑋C𝑇𝑋∗)

}≃𝑁∏
𝑖=1

[
𝑝∑

𝑗=1

1

𝑝

∣∣∣ 𝜋
𝑎𝑏
𝐸𝑒𝑖𝑔𝑛
𝑗,(𝑥,𝑦)

∣∣∣2
]
≃
(𝜋
𝑎𝑏

)2𝑁
. (45)

Based on the above discussion, the optimal RX and TX
MIMO antenna geometry in high SNR regime is described
as follows: the number and geometry of the antenna elements
depend on which modes have significant power in the tunnel.
For mode 𝐸𝑀𝑚𝑛, 𝑝 = 𝑞 = 𝑚 × 𝑛 antenna elements are
needed. Their positions {(𝑥𝑢, 𝑦𝑣)} should be

𝑥𝑢 = −𝑎+ (𝑢− 1

2
)
2𝑎

𝑚
, 𝑢 ∈ [1,𝑚] ;

𝑦𝑣 = −𝑏+ (𝑣 − 1

2
)
2𝑏

𝑛
, 𝑣 ∈ [1, 𝑛]. (46)

With lower attenuation rates, the probability that the lower
order modes have significant power is higher. Therefore, lower
order modes are first to be considered when the number of
available antenna elements is limited. For example, if we only
have one antenna element, the lowest order mode 𝐸𝐻11 is
considered. The position of the antenna element is (0, 0). If
we have three antenna elements, both mode 𝐸𝐻11 and 𝐸𝐻21

are considered. The positions of the three antenna elements
are (0, 0), (−𝑎/2, 0) and (𝑎/2, 0), so on and so forth.
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Intuitively, in high SNR regime, each significant mode
needs a set of TX and RX antenna elements to be efficiently
excited and received. By substituting (44) and (45) into
(22) and (24), we find that the high SNR 𝜖-outage capacity
increases linearly with log 𝑞 where 𝑞 is the number of RX
elements. It indicates that more RX elements are always
favorable although the capacity increase becomes trivial when
𝑞 is larger than a threshold. In contrast, the high SNR 𝜖-outage
capacity remains the same as the number of TX elements
increases, which is because that the total TX power 𝑃𝑡𝑜𝑡 is
a constant and is equally divided and allocated to each TX
elements.

2) MIMO Antenna Geometry in Low SNR Regime: In low
SNR regime, the optimal RX antenna geometry designed for
high SNR regime still works, since the proposed RX antenna
geometry can effectively receive all significant propagation
modes no matter whether the SNR is high or low. However,
the number and geometry of the TX antenna elements in low
SNR regime need to be redesigned since it may be not efficient
to involve a large number of TX antenna elements to excite
all propagation modes in low SNR regime.

Based on the above discussion, our goal in this subsec-
tion is to maximize the low SNR 𝜖-outage capacity in (41)
by designing the number and geometry of the TX antenna
elements while keep the RX antenna geometry designed for
high SNR regime. In (41), the low SNR 𝜖-outage capacity is
determined by the mean capacity 𝐸[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
] and the coefficient

𝜅, where 𝜅 is determined by the ratio 𝑉𝑎𝑟[ℂ𝑙𝑜𝑤𝑀𝐼𝑀𝑂]

𝐸2[ℂ𝑙𝑜𝑤𝑀𝐼𝑀𝑂]
, which can be

approximately viewed as a constant if only antenna geometry
can be changed, according to (33) - (40). Hence, the coefficient
𝜅 becomes a constant. As a result, in low SNR regime, to
maximize the 𝜖-outage capacity is equal to maximize the mean
capacity 𝐸[ℂ

𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
], in the condition that only the antenna

geometry can be designed.
Since the optimal RX geometry for high SNR regime is also

utilized in low SNR regime, the correlation matrix E𝑅𝑋∗E𝑅𝑋

is a diagonal matrix. Then (26) and (29) becomes:

ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
≃ log 𝑒 ⋅ tr

[𝜌
𝑝

(E𝑅𝑋∗E𝑅𝑋)⋅D𝑀

𝑧𝑟⋅(C𝑇𝑋C𝑇𝑋∗)⋅D𝑀∗
𝑧𝑟

]
=log 𝑒 ⋅ tr

[𝜌
𝑝
⋅ 𝑞 ⋅ I⋅D𝑀

𝑧𝑟⋅(C𝑇𝑋C𝑇𝑋∗)⋅D𝑀∗
𝑧𝑟

]
=log 𝑒 ⋅ tr

[𝑞𝜌
𝑝

(C𝑇𝑋C𝑇𝑋∗)⋅(D𝑀∗
𝑧𝑟 D

𝑀

𝑧𝑟)
]

=
𝑞𝜌

𝑝
log 𝑒⋅

𝑁∑
𝑙=1

𝑝∑
𝑗=1

∣∣∣𝐶𝑇𝑋

𝑙,𝑗

∣∣∣2⋅∣∣∣𝑒−Γ𝑙⋅𝑧𝑟 ⋅𝑀∏
𝑘=1

(1−𝐿𝑘𝑙 )
∣∣∣2. (47)

To determine the optimal number and positions of the TX
antenna elements in low SNR regime, we first assume that
a sufficient large number of TX antenna elements are placed
at the whole tunnel cross section. Then we define a set of
indicators {𝛿𝑗 , 𝑗 = 1, 2, ..., 𝑝} where 𝛿𝑗 = 1 if the 𝑗𝑡ℎ TX
antenna element is actually used, otherwise 𝛿𝑗 = 0. Then (47)
becomes:

ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
≃ 𝑞𝜌 log 𝑒∑𝑝

𝑗=1
𝛿𝑗

⋅
𝑝∑

𝑗=1

𝛿𝑗 ⋅
𝑁∑
𝑙=1

∣∣∣𝐶𝑇𝑋

𝑙,𝑗 ⋅𝑒−Γ𝑙⋅𝑧𝑟
∣∣∣2⋅𝑀∏
𝑘=1

(1−𝐿𝑘𝑙 )2. (48)

Hence,

𝐸[ℂ
𝑙𝑜𝑤

𝑀𝐼𝑀𝑂
] ≃ 𝑞𝜌 log 𝑒∑𝑝

𝑗=1
𝛿𝑗

⋅
𝑝∑

𝑗=1

𝛿𝑗 ⋅
𝑁∑
𝑙=1

∣∣∣𝐶𝑇𝑋

𝑙,𝑗 ⋅𝑒−Γ𝑙⋅𝑧𝑟
∣∣∣2⋅𝐸[ 𝑀∏

𝑘=1

(1−𝐿𝑘𝑙 )2
]

=
𝑞𝜌 log 𝑒∑𝑝

𝑗=1
𝛿𝑗

⋅
𝑝∑

𝑗=1

𝛿𝑗 ⋅
𝑁∑
𝑙=1

∣∣∣𝐶𝑇𝑋

𝑙,𝑗 ⋅𝑒−Γ𝑙⋅𝑧𝑟
∣∣∣2⋅𝑒𝜆𝑧𝑟𝑣 (𝜇𝑙2+𝜎2

𝑙−1), (49)

where 𝜇𝑙 and 𝜎2
𝑙 is defined in (38) and (40), respectively.

Therefore, to find the optimal TX antenna geometry in low
SNR regime, it is equal to an optimization problem, which is:

𝐹𝑖𝑛𝑑 : {𝛿𝑗 , 𝑗 = 1, 2, ..., 𝑝}

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 :
𝑞𝜌 log 𝑒∑𝑝

𝑗=1
𝛿𝑗

⋅
𝑝∑

𝑗=1

𝛿𝑗 ⋅
𝑁∑
𝑙=1

∣∣∣𝐶𝑇𝑋

𝑙,𝑗 ⋅𝑒−Γ𝑙⋅𝑧𝑟
∣∣∣2⋅𝑒𝜆𝑧𝑟𝑣 (𝜇𝑙

2+𝜎2
𝑙−1)

It is not difficult to find the solution of this optimization
problem, which is: 𝛿𝑘 = 1 if 𝑘 = arg max𝑗

∑𝑁
𝑙=1

∣∣𝐶𝑇𝑋

𝑙,𝑗 ⋅
𝑒−Γ𝑙⋅𝑧𝑟

∣∣2⋅𝑒𝜆𝑧𝑟𝑣 (𝜇𝑙
2+𝜎2

𝑙−1); otherwise 𝛿𝑘=0. Therefore, the optimal
TX antenna geometry in low SNR regime involves only one
antenna element. According to the channel model given in
Section III, the position of the optimal TX antenna element is
located at the center of the tunnel, i.e., (𝑥, 𝑦) = (0, 0).

To sum up, the optimal RX antenna geometry in low SNR
regime is the same as in the high SNR regime. The optimal
TX antenna geometry in low SNR regime involves only one
antenna element that is located at the center of the tunnel cross
section. This result can be intuitively explained as follows. In
low SNR regime, given a fixed total transmitting power 𝑃𝑡𝑜𝑡,
it is more efficient to concentrate all TX power at the antenna
element that can achieves smallest path loss.

V. CAPACITY AND OUTAGE BEHAVIOR OF COOPERATIVE

COMMUNICATION SYSTEMS IN UNDERGROUND TUNNELS

In many applications, such as wireless sensor networks,
it is impossible to place multiple antenna elements on a
single device due to the limited size and cost. In this case,
instead of MIMO, cooperative communication systems can
be utilized. Based on the channel model in Section III and
the MIMO capacity analysis in Section IV, the capacity and
outage behavior of the cooperative communication systems in
underground tunnels are investigated in this section.

A. Capacity and Outage Probability

In this subsection, we investigate the capacity and the out-
age performance of the selection Decode-and-Forward (DF)
cooperative scheme [18], which has been widely recognized.
The selection DF scheme consists of two phases. In the first
phase, the source node sends out the information, which is
received by both the relay node and the destination node.
In the second phase, the relay node checks the SNR of the
received signal. If the SNR is above a threshold, the relay
node decodes and forwards the received data to the destination
node. Otherwise, the source nodes just send the information
again to the destination node. According to [18], the channel
capacity of this cooperative system is given by

ℂ𝑐𝑜𝑜𝑝=

{
1
2 log

(
1+2𝜌∣ℎ𝑠𝑑∣2

)
, if ∣ℎ𝑠𝑟∣2<𝑒𝑅−1

𝜌
1
2 log

(
1+𝜌∣ℎ𝑠𝑑∣2+𝜌∣ℎ𝑟𝑑∣2

)
, if ∣ℎ𝑠𝑟∣2≥𝑒𝑅−1

𝜌

(50)
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where ℎ𝑠𝑑, ℎ𝑟𝑑, and ℎ𝑠𝑟 are the channel gains between the
source and the destination, the relay and the destination,
and the source and the relay, respectively; 𝜌 is the SNR at
the transmitter; 𝑅 is the expected data rate. In underground
tunnels, the channel gain ℎ𝑠𝑑, ℎ𝑟𝑑, and ℎ𝑠𝑟 can be calculated
by (8). Then the instantaneous cooperative capacity in un-
derground tunnels can be derived. However, the distribution
of the cooperative capacity in underground tunnels does not
fall into any type of classical random distributions. In the
following, we calculate the outage probability to characterize
this distribution. The outage probability of the DF cooperative
scheme can be derived according to (50), which is given by:

𝑃 [ℂ𝑐𝑜𝑜𝑝<𝑅]=𝑃
(∣ℎ𝑠𝑟∣2<𝑒𝑅−1

𝜌

)⋅𝑃 (∣ℎ𝑠𝑑∣2<𝑒𝑅−1

2𝜌

)
(51)

+𝑃
(∣ℎ𝑠𝑟∣2≥𝑒𝑅−1

𝜌

)⋅𝑃 (∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2<𝑒
𝑅−1

𝜌

)
.

According to (51), we find that the outage probability is
determined by the channel gains ∣ℎ𝑠𝑑∣2, ∣ℎ𝑟𝑑∣2, and ∣ℎ𝑠𝑟∣2.
In Section 4.1.2, the square of the channel gain norm ∣ℎ𝑖𝑗 ∣2
is developed as (30), which is proved to follow a log-
normal distribution. The mean and variance of this log-normal
variable, 𝐸[∣ℎ𝑖𝑗 ∣2] and 𝑉𝑎𝑟[∣ℎ𝑖𝑗 ∣2], can be calculated using
(35)-(40). Then,

𝑃
(∣ℎ𝑖𝑗 ∣2<𝑒𝑅−1

𝜌

)
=

1

2

[
1+erf

( ln 𝑒𝑅−1
𝜌 − 𝜇∣ℎ𝑖𝑗 ∣2√
2 ⋅ 𝜎∣ℎ𝑖𝑗 ∣2

)]
, (52)

where

𝜇∣ℎ𝑖𝑗 ∣2 =ln(𝐸[∣ℎ𝑖𝑗 ∣2])− 1

2
ln
(

1+
𝑉𝑎𝑟[∣ℎ𝑖𝑗 ∣2]

𝐸2[∣ℎ𝑖𝑗 ∣2]

)
;

𝜎2
∣ℎ𝑖𝑗 ∣2 =ln

(
1+

𝑉𝑎𝑟[∣ℎ𝑖𝑗 ∣2]

𝐸2[∣ℎ𝑖𝑗 ∣2]

)
. (53)

The sum of two log-normal variable, ∣ℎ𝑠𝑑∣2 + ∣ℎ𝑟𝑑∣2, also
follows a log-normal distribution:

𝑃
(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2<𝑒

𝑅−1

𝜌

)
=

1

2

[
1+erf

(ln𝑒𝑅−1𝜌 −𝜇(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2)√
2 ⋅ 𝜎(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2)

)]
,

(54)

where

𝜇(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2) = ln(𝐸[∣ℎ𝑠𝑑∣2] + 𝐸[∣ℎ𝑟𝑑∣2])

− 1
2 ln

(
1 + 𝑉𝑎𝑟[∣ℎ𝑠𝑑∣2]+𝑉𝑎𝑟[∣ℎ𝑟𝑑∣2]

(𝐸[∣ℎ𝑠𝑑∣2]+𝐸[∣ℎ𝑟𝑑∣2])2
)

;

𝜎2
(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2) =ln

(
1 + 𝑉𝑎𝑟[∣ℎ𝑠𝑑∣2]+𝑉𝑎𝑟[∣ℎ𝑟𝑑∣2]

(𝐸[∣ℎ𝑠𝑑∣2]+𝐸[∣ℎ𝑟𝑑∣2])2
)
. (55)

Substituting (52) and (54) into (51) yields the outage
probability in underground tunnels:

𝑃 [ℂ𝑐𝑜𝑜𝑝 < 𝑅] = (56)

1

4

[
1+erf

( ln 𝑒𝑅−1
𝜌 − 𝜇∣ℎ𝑠𝑟∣2√
2 ⋅ 𝜎∣ℎ𝑠𝑟∣2

)]
⋅
[
1+erf

( ln 𝑒𝑅−1
2𝜌 − 𝜇∣ℎ𝑠𝑑∣2√
2 ⋅ 𝜎∣ℎ𝑠𝑑∣2

)]

+
1

4

[
1−erf

( ln𝑒
𝑅−1
𝜌 −𝜇∣ℎ𝑠𝑟∣2√
2 ⋅ 𝜎∣ℎ𝑠𝑟∣2

)]
⋅
[
1+erf

( ln 𝑒𝑅−1
𝜌 −𝜇(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2)√
2 ⋅ 𝜎(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2)

)]
.

Note that the 𝜖-outage cooperative capacity Outage𝜖[ℂ𝑐𝑜𝑜𝑝]
can be also calculated from (56) by letting 𝑅 =
Outage𝜖[ℂ𝑐𝑜𝑜𝑝] and 𝑃 [ℂ𝑐𝑜𝑜𝑝 < Outage𝜖[ℂ𝑐𝑜𝑜𝑝]] = 𝜖.

B. Optimal Relay Assignment in Tunnels

So far we assume that the relay position is determined.
However, in real applications, especially the mobile wireless
networks, the positions of the cooperative users are highly
dynamic. Since the relay position has obvious influence on
the outage probability, the cooperative relay assignment is of
great important. In this subsection, we first use the outage
probability given in (56) as the relay assignment metric and
propose an outage-optimal and fully distributed cooperative
relay assignment protocol. Then, we develop a much simpler
relay assignment metric based on the outage probability to
reduce the computation burden on each cooperative node.

1) Outage-Optimal Relay Assignment Protocol: Assuming
that in an underground tunnel, the source node 𝑠 is to send data
to the destination node 𝑑. Node 𝑠 assign one of its neighbors
{𝑟𝑖, 𝑖 = 1, 2, ...} as the relay node and adopts the selection
DF scheme. All the nodes have its own position information,
which is valid in most applications. The source first sends
RTS message to all its neighbors. RTS message contains
the position information of the source and the destination.
Each neighbor that can correctly receives the RTS message
calculates the relay assignment metric. Here we first use
the outage probability given in (56) as the relay assignment
metric. To calculate this metric, the following information is
required: 1) the position information of itself, the source, and
the destination, and 2) the statistical vehicular traffic load
information in the underground tunnel, which is assume to
be available at each node. No information exchanging among
neighbor nodes and the destination node is required.

After deriving the relay assignment metric, each neighbor
node randomly select a back-off time and start timing. The
mean value of the back-off time is proportional to the relay
assignment metric, i.e. the outage probability. The neighbor
node sends out a CTS message to the source node after the
back-off time out if it does not receive any other CTS mes-
sages from other neighbors during the back-off time. Then the
source node assigns this neighbor as the relay node and starts
the selection decode-and-forward cooperative communication.
By this relay assignment protocol, the neighbor node that has
the least outage probability will be selected as the cooperative
relay. Therefore, the protocol is outage-optimal. Moreover,
since calculating the relay assignment metric only require
the source and destination position information in the RTS
message and the position information of each neighbor node
itself, the proposed protocol is also fully distributed.

2) Simpler Relay Assignment Metric: Despite the advan-
tages of the proposed relay assignment protocol, the compu-
tation burden to calculate the outage probability in (56) is
heavy for low cost and resource limited devices, such as sensor
nodes. Therefore, we propose a simpler relay assignment
metric based on the outage probability given in (56).

According to (56), to minimize the outage probability is
equal to maximize the parameters 𝜇∣ℎ𝑠𝑟∣2 and 𝜇(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2)
while minimizing the parameters 𝜎∣ℎ𝑠𝑟 ∣2 and 𝜎(∣ℎ𝑠𝑑∣2+∣ℎ𝑟𝑑∣2).
Similar to the analysis in Section 4.2.2, it can be proved that
the position of the relay node does not significantly affect
the ratio 𝑉𝑎𝑟[∣ℎ𝑠𝑑∣2]+𝑉𝑎𝑟[∣ℎ𝑟𝑑∣2]

(𝐸[∣ℎ𝑠𝑑∣2]+𝐸[∣ℎ𝑟𝑑∣2])2 and the ratio 𝑉𝑎𝑟[∣ℎ𝑠𝑟∣2]
𝐸2[∣ℎ𝑠𝑟∣2] . Hence,

according to (53) and (55), to minimize the outage probability
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Fig. 2. Ergodic and 10%-outage MIMO capacity as functions of the axial
distance between transceivers.

in (56) is equal to maximize ln(𝐸[∣ℎ𝑠𝑟∣2]) and ln(𝐸[∣ℎ𝑠𝑑∣2]+
𝐸[∣ℎ𝑟𝑑∣2]). Since 𝐸[∣ℎ𝑠𝑑∣2] is determined, ony 𝐸[∣ℎ𝑠𝑟∣2] and
𝐸[∣ℎ𝑟𝑑∣2] need to be considered. However, there exists tradeoff
between ∣ℎ𝑠𝑟∣ and ∣ℎ𝑟𝑑∣. The optimal relay node should be
placed at the position where ∣ℎ𝑠𝑟∣ and ∣ℎ𝑟𝑑∣ are both sufficient
large. Motivated by the above discussion, to reduce the metric
computation complexity, we use min{𝐸[∣ℎ𝑠𝑟∣], 𝐸[∣ℎ𝑟𝑑∣]} as a
simpler metric instead of the outage probability.

This simpler metric metric can be calculated based on
(30), (31), and (39), which can be further simplified by the
following approximation. Since the lowest order mode 𝐸𝐻11

has the lowest attenuation rate in tunnels, if the distance
between source and destination is large enough, we can
approximately assume that only the lowest order mode exists.
This assumption is valid since the cooperative communication
is not necessary in short range distance communication where
the impact of multipath fading is negligible. Then the simpler
metric can be calculated as

min{𝐸[∣ℎ𝑠𝑟∣], 𝐸[∣ℎ𝑟𝑑∣]} ≃ (57)

min
{∣∣ 𝜋
𝑎𝑏
𝐸𝑒𝑖𝑔𝑛

1,(𝑥𝑟,𝑦𝑟)
⋅𝐸𝑒𝑖𝑔𝑛

1,(𝑥𝑠,𝑦𝑠)
⋅𝑒𝑧𝑠𝑟⋅[−Γ1+𝜆𝑣 (𝜇1−1)]∣∣,∣∣ 𝜋

𝑎𝑏
𝐸𝑒𝑖𝑔𝑛

1,(𝑥𝑟,𝑦𝑟)
⋅𝐸𝑒𝑖𝑔𝑛

1,(𝑥𝑑,𝑦𝑑)
⋅𝑒𝑧𝑟𝑑⋅[−Γ1+𝜆𝑣 (𝜇1−1)]∣∣},

where 𝑧𝑠𝑟 is the axial distance between the source and the
relay; 𝑧𝑟𝑑 is the axial distance between the destination and
the relay; Γ1 is the attenuation coefficient of mode 𝐸𝐻11;
𝐸𝑒𝑖𝑔𝑛

1,(𝑥,𝑦) is given in (1); 𝜇1 is defined in (38).
The simpler relay assignment metric given in (57) can be

adopted in resource limited devices instead of the outage
probability given in (56). Note that the back-off time is
inversely proportional to this simpler relay assignment metric.

VI. NUMERICAL ANALYSIS

In this section, the capacity and outage behavior of MIMO
and cooperative communication systems in underground tun-
nels are numerically analyzed. Then, the proposed MIMO
antenna geometry as well as the cooperative relay assignment
protocol are compared with existing geometry and protocols,
respectively. Except studying the effect of certain parameters,
the default simulation parameters are set as follows: The one-
lane tunnel has a rectangle cross section with a height of
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Fig. 3. CDF of MIMO capacity: (a) high SNR, (b) low SNR.
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Fig. 4. 10%-Outage MIMO capacity with different antenna geometries as
a function of (a) axial distance (SNR at the transmitter is 100 dB) and (b)
SNR at the transmitter (axial distance is 500 m).

4 m and a width of 6 m. The operating frequency is 1 GHz.
The SNR at the transmitter 𝜌 = 𝑃𝑡𝑜𝑡

𝑁0
is 100 dB. The traffic

load is described using the average rate of vehicle arrival 𝜆
and average vehicle velocity 𝑣. The default values are set as
𝜆 = 0.5 𝑠−1 and 𝑣 = 72 km/hour.

A. MIMO Systems in Tunnels

Fig. 2 shows the ergodic and the 10%-outage MIMO
capacity as functions of of the axial distance between the
transceivers, where the 5 × 5 MIMO antenna with optimal
geometry is adopted. It shows that the theoretical results in
high SNR regime have a good match with the simulations
when the axial distance is smaller than 500 m, while the
theoretical results in low SNR regime have a good match
with the simulations when the axial distance is larger than
1000 m. Therefore, the theoretical ergodic and outage MIMO
capacities have a good match with the simulations in both high
SNR regime and low SNR regime.

In Fig. 3(a), the cumulative distribution function (CDF) of
the normal distribution with parameters derived in high SNR
regime is compared with the simulated capacity distribution
when axial distance is 400 m. In Fig. 3(b), the CDF of the
log-normal distribution with parameters derived in low SNR
regime is compared with the simulated capacity distribution
when axial distance is 1200 m. A good match is shown
between the theoretical and simulation results.

Fig. 4(a) and Fig. 4(b) show the 10%-Outage capacity of
the optimal MIMO antenna geometries with different element
number as a function of the axial distance and the SNR
at the transmitter, respectively. The capacity of a traditional
linear antenna array with 3 antenna elements is also provided
for comparison. For fair comparison, one terminal of the
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Fig. 5. Outage probabilities of cooperative communication systems with
different traffic loads.

traditional linear antenna array is placed at the center of the
tunnel. The array is placed parallel to the floor with interval of
one wavelength (0.33 m). Fig. 4(a) and Fig. 4(b) indicate that,
the MIMO capacity with optimal geometry is significantly
higher than that of the undesigned geometry. In low SNR
regime, the undesigned linear array has even smaller capacity
than that of the SISO (1 × 1) system placed at the optimal
position. In high SNR regime (axial distance smaller than
500 m), the optimal 3 × 3 MIMO antenna achieves much
higher capacity than the optimal 1× 3 SIMO antenna. In low
SNR regime (axial distance larger than 600 m), the optimal
1× 3 SIMO antenna achieves higher outage capacity than the
optimal 3× 3 MIMO antenna. This phenomenon is consistent
with our analysis on the MIMO antenna geometry design in
Section IV-B, i.e. the spatial diversity at the TX side is more
efficient in the high SNR regime that in the low SNR regime.

Moreover, Fig. 4(a) and Fig. 4(b) also show the capacity
of a 3 × 3 MIMO system and a SISO system in terrestrial
environments. A widely used terrestrial channel model is
utilized, where the Friis transmission equation with a exponent
of 3 is used to model the path loss and a Rayleigh random
variable is used to model the multipath fading. The MIMO
antenna elements are placed far enough to guarantee they are
not correlated. Fig. 4(a) and Fig. 4(b) show that the capacity
of MIMO and SISO system is much smaller than the capacity
in tunnels since the signal energy in tunnels does not spread
as much as in terrestrial environments. Meanwhile, the gain
of MIMO compared with SISO in terrestrial environments is
larger than in tunnels since the MIMO antenna elements in
tunnels are more correlated.

B. Cooperative Communication Systems in Tunnels

In the following analysis on cooperative communication
systems in tunnels, we assume the source node and the
destination node are 400 m apart. Both nodes are placed at
the center of the tunnel cross section. First, we assume that
the relay node is fixed, which is placed in the middle point of
the distance between the source and the destination, i.e., at the
center of the tunnel cross section and 200 m apart from both
the source and the destination. In Fig. 5, it is shown that the
theoretical outage probability is consistent with the simulation
results with different traffic load (average arrival rate 𝜆).
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Fig. 6. Outage probability with different cooperative relay assignment
strategy as functions of different (a) TX SNR and (b) traffic load.

As the traffic load become heavier, the mean cooperative
capacity decreases and the variance of the cooperative capacity
increases, which is due to the reason that heavier traffic load
causes higher additional path loss and more randomness.

Then, the performance of the relay assignment protocols is
analyzed. In the following simulations, we let 50 cooperative
relay nodes uniformly distributed between the source and the
destination. The position of each relay node on the tunnel cross
section is also uniformly distributed. Four relay assignment
strategies are adopted: 1) optimal strategy that use the outage
probability given in (56) as the metric; 2) simpler metric
strategy that use the metric given in (57); 3) nearest neighbor
strategy given in [22] that select the nearest neighbor as the
relay node; and 4) farthest neighbor strategy that that select
the farthest neighbor as the relay node. In Fig. 6, the outage
probability of the four strategies are provided as functions
of the TX SNR and the traffic load (𝜆). As expected, the
optimal strategy achieves the lowest outage probability in
all conditions. The simpler metric strategy has higher outage
probability than the optimal strategy but much lower than the
nearest and farthest neighbor strategy.

VII. CONCLUSION

In this paper, we analyze the capacity and outage behavior
of the MIMO and cooperative communication systems based
on the underground tunnel channel model. For MIMO system,
we prove that the MIMO capacity in underground tunnels
follows either a normal distribution in high SNR regime or a
log-normal distribution in low SNR regime. The ergodic and
outage capacity of MIMO systems in tunnels are explicitly
expressed as functions of tunnel size, transmission power,
vehicular traffic load, and MIMO antenna geometry. Then the
optimal MIMO antenna geometry design scheme is proposed,
which obviously increases the outage capacity. For cooperative
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communication systems, we calculate the outage probability
of such systems in underground tunnels. Based on the formula
of the outage probability, we proposed an outage-optimal
cooperative relay assignment protocol, which significantly
outperforms the existing relay assignment protocols in term
of outage probability in underground tunnel environments.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation (CCF-0728889).

REFERENCES

[1] I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques
for wireless underground communication networks,” Physical Commun.
J., vol. 2, no. 3, pp. 167-183, Sep. 2009.

[2] Z. Sun and I. F. Akyildiz, “Channel modeling of wireless networks in
tunnels,” in Proc. IEEE GLOBECOM, Nov. 2008.

[3] Z. Sun and I. F. Akyildiz, “Channel modeling and analysis for wireless
networks in underground mines and road tunnels,” IEEE Trans. Com-
mun., vol. 58, no. 6, pp. 1758-1768, June 2010.

[4] Z. Sun and I. F. Akyildiz, “Influences of vehicles on signal propagation
in road tunnels,” in Proc. IEEE ICC, May 2010.

[5] Z. Sun and I. F. Akyildiz, “A mode-based approach for channel modeling
in underground tunnels under the impact of vehicular traffic flow,”
submitted to IEEE Trans. Wireless Commun., in Apr. 2010, revised in
Mar. 2011 and June 2011.

[6] D. G. Dudley, M. Lienard, S. F. Mahmoud, and P. Degauque, “Wireless
propagation in tunnels,” IEEE Antennas Propag. Mag., vol. 49, no. 2,
pp. 11-26, Apr. 2007.

[7] S. F. Mahmoud and J. R. Wait, “Geometrical optical approach for
electromagnetic wave propagation in rectangular mine tunnels,” Radio
Science, vol. 9, no. 12, pp. 1147-1158, Dec. 1974.

[8] Y. Hwang, Y. P. Zhang, and R. G. Kouyoumjian, “Ray-optical prediction
of radio-wave propagation characteristics in tunnel environments part 1:
theory and part 2: analysis and measurements,” IEEE Trans. Antennas
Propag., vol. 46, no. 9, pp. 1328-1345, Sep. 1998.

[9] K. D. Laakmann and W. H. Steier, “Waveguides: characteristic modes
of hollow rectangular dielectric waveguides,” Applied Optics, vol. 15,
no. 5, pp. 1334-1340, May 1976.

[10] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method, 3rd edition. Artech House,
2005.

[11] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, pp. 585-595, 1999.

[12] A. Scaglione, D. L. Goeckel, and J. N. Laneman, “Cooperative commu-
nications in mobile ad hoc networks,” IEEE Signal Process. Mag., vol.
23, no. 5, pp. 18-29, Sep. 2006.

[13] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-
antenna communication link in Rayleigh flat fading,” IEEE Trans. Inf.
Theory, vol. 45, no.1, pp. 139-157, Jan. 1999.

[14] D. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation
and its effect on the capacity of multielement antenna systems,” IEEE
Trans. Commun., vol. 48, no. 3, pp. 502-513, Mar. 2000.

[15] A. L. Moustakas and S. H. Simon, “On the outage capacity of correlated
multiple-path MIMO channels,” IEEE Trans. Inf. Theory, vol. 53, no.
11, pp. 3887-3903, Nov. 2007.

[16] S. Loyka, “Multiantenna capacities of waveguide and cavity channels,”
IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 863-872, May 2005.

[17] J. M. Molina-Garcia-Pardo, M. Lienard, P. Degauque, D. G. Dudley,
and L. Juan-Llacer, “Interpretation of MIMO channel characteristics in
rectangular tunnels from modal theory,” IEEE Trans. Veh. Technol., vol.
57, no. 3, pp. 1974-1979, May 2008.

[18] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec 2004.

[19] A. S. Avestimehr and D. N. C. Tse, “Outage capacity of the fading relay
channel in the low-SNR regime,” IEEE Trans. Inf. Theory, vol. 53, no.
4, pp. 1401-1415, Apr. 2007.

[20] Y. Shi, S. Sharma, Y. T. Hou, and S. Kompella, “Optimal relay
assignment for cooperative communications,” in Proc. ACM MobiHoc,
May 2008.

[21] E. Beres and R. Adve, “Selection cooperation in multi-source coop-
erative networks,” IEEE Trans. Wireless Commun., vol. 7, no. 1, pp.
118-127, Jan. 2008.

[22] A. K. sadek, Z. Han, and K. J. R. Liu, “Distributed relay-assignment
protocols for coverage expansion in cooperative wireless networks,”
IEEE Trans. Mobile Comput., vol. 9, no. 4, pp. 505-515, Apr. 2010.

[23] E. Limpert, W. Stahel, and M. Abbt, “Log-normal distributions across
the sciences: keys and clues,” BioScience, vol. 51, no. 5, pp. 341-352,
May 2001.

[24] N. Mehta, J. Wu, A. Molisch, and J. Zhang, “Approximating a sum of
random variables with a lognormal,” IEEE Trans. Wireless Commun.,
vol. 6, no. 7, pp. 2690-2699, July 2007.

[25] G. Strang, Linear Algebra and its Applications, 4th edition. Thomson,
Brooks/Cole, 2006.

[26] P. Billingsley, Probability and Measure, 3rd edition. John Wiley & Sons,
1995.

[27] D. L. Gerlough and M. J. Huber, Traffic Flow Theory: A Monograph.
National Research Council, 1975.

Zhi Sun received B.S. degree in Communication
Engineering from Beijing University of Posts and
Telecommunications (BUPT), and the M.S. degree
in Electronic Engineering from Tsinghua University,
Beijing, China, in 2004 and 2007, respectively. He
received the Ph.D. degree in Electrical and Com-
puter Engineering from Georgia Institute of Tech-
nology, Atlanta, GA. in 2011, under the guidance of
Prof. Ian F. Akyildiz. Currently, he is a Postdoctoral
Researcher in the Broadband Wireless Networking
Laboratory, School of Electrical and Computer En-

gineering, Georgia Institute of Technology, Atlanta, GA. Dr. Sun received
the Best Paper Award in IEEE Globecom 2010. He also received the 2009
Researcher of the Year Award in Broadband Wireless Networking Laboratory,
Georgia Institute of Technology and the 2007 Excellent Graduate Student
Award in Tsinghua University. His current research interests are in wireless
underground networks, wireless sensor networks, and mobile ad hoc networks.

Ian F. Akyildiz received the B.S., M.S., and Ph.D.
degrees in Computer Engineering from the Univer-
sity of Erlangen-Nürnberg, Germany, in 1978, 1981
and 1984, respectively. Currently, he is the Ken
Byers Chair Professor with the School of Electri-
cal and Computer Engineering, Georgia Institute of
Technology, Atlanta, the Director of the Broadband
Wireless Networking Laboratory and the Chair of
the Telecommunications Group at Georgia Tech.
In June 2008, Dr. Akyildiz became an honorary
professor with the School of Electrical Engineering
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