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Abstract—Molecular communication (MC) will enable the ex-
change of information among nanoscale devices. In this novel bio-
inspired communication paradigm, molecules are employed to en-
code, transmit and receive information. In the most general case,
these molecules are propagated in the medium by means of free dif-
fusion. An information theoretical analysis of diffusion-based MC
is required to better understand the potential of this novel com-
munication mechanism. The study and the modeling of the noise
sources is of utmost importance for this analysis. The objective of
this paper is to provide a mathematical study of the noise at the
reception of the molecular information in a diffusion-based MC
system when the ligand-binding reception is employed. The ref-
erence diffusion-based MC system for this analysis is the phys-
ical end-to-end model introduced in a previous work by the same
authors, where the reception process is realized through ligand-
binding chemical receptors. The reception noise is modeled in this
paper by following two different approaches, namely, through the
ligand-receptor kinetics and through the stochastic chemical ki-
netics. The ligand-receptor kinetics allows to simulate the random
perturbations in the chemical processes of the reception, while the
stochastic chemical kinetics provides the tools to derive a closed-
form solution to the modeling of the reception noise. The ligand-re-
ceptor kinetics model is expressed through a block scheme, while
the stochastic chemical kinetics results in the characterization of
the reception noise using stochastic differential equations. Numer-
ical results are provided to demonstrate that the analytical formu-
lation of the reception noise in terms of stochastic chemical kinetics
is compliant with the reception noise behavior resulting from the
ligand-receptor kinetics simulations.

Index Terms—Chemical master equation, diffusion, ligand-re-
ceptor kinetics, molecular communication, nanonetworks, nan-
otechnology, reaction rate equation, stochastic chemical kinetics.

I. INTRODUCTION

M OLECULAR COMMUNICATION (MC) is increas-
ingly attracting the interest of the research community

working in the field of information exchange at the nanoscale
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[1]. MC is a paradigm in which molecules are used to encode,
transmit and receive information. This paradigm has been
inspired by biology, where cells employ MC to establish both
intracellular and intercellular information links [2].

Nanoscale devices are nowadays enabled by nanotechnology,
which studies the realization of components in a scale ranging
from one to a few hundred nanometers. Those components can
be used to build basic structural and functional devices, i.e.,
nanomachines, which are able to perform tasks at nano-level,
such as computing, data storing, sensing, actuation and commu-
nication. Once nanomachines can communicate between each
other, they can be interconnected as a network, or nanonetwork
[1], to execute more complex tasks and to expand their range of
operation.

The application of MC to nanomachines stems from the pos-
sibility to satisfy constraints both in the apparatus size and in the
communication medium. The former constraint is posed by the
need to integrate molecular transceivers in the nanomachines.
The latter constraint is given by the particular characteristics of
the medium in which nanomachines can be immersed, such as in
intra-body deployment or in other application scenarios. Some
specific media, such as liquids, restrict the possibility of using
other communication paradigms, i.e., the electromagnetic com-
munication.

Different techniques can be used in molecular communica-
tion to exchange information. These range from the use of car-
riers, such as molecular motors [3] or bacteria [4], to the dif-
fusion of the molecules in a fluid [5]. The focus of this paper
is on diffusion-based techniques, since they can be considered
the most common in nature. The calcium signaling among cells
[6], the pheromonal communication [7]-[8] among animals and
the synaptic transmission between neurons [2] are examples of
these techniques, while they differ in the way molecules are dif-
fused and received. The theory of turbulent diffusion [9] and
the odorant-binding protein reception [10] can be applied to the
pheromonal communication, while the theory of electro-diffu-
sion [11] and the ligand-gated ion channel reception [12] are
applicable to the calcium signaling. More general models for
molecular diffusion and reception, which underlie all the other
models, are based on the theory of the Brownian motion diffu-
sion [13] and the ligand-binding reception [14] and they can be
successfully applied, e.g., to the synaptic transmission of neuro-
transmitters in neurons. Further specifications of the system for
the pheromonal communication case or the calcium signaling
case depend from the general case treated in this work.

One of the main challenges in diffusion-based MC is the
proper study and characterization of the noise. Most of the con-
tributions from the literature to the noise analysis for diffu-
sion-based MC are mainly based on the results of simulations
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and do not provide closed-form solutions to the modeling of
the noise sources. As an example, in [5] the results of simu-
lations show a noise for the diffusion-based MC which follows
a non-Gaussian statistics, although the analytical model for this
statistics is not investigated. In [15] the noise effects on the dif-
fusion-based MC are resulting only from simulation and there is
no analytical model of diffusion-based noise and no stochastic
study of its underlying physical phenomena. Moreover, in [15]
there is no specific analysis of the noise sources which affect the
reception side of a diffusion-based MC system. In [16], the dif-
fusion-based MC reception noise is analyzed in terms of prob-
ability of having erroneous digital reception, under the assump-
tion of a binary squared pulse code modulation signal. As a con-
sequence, the work in [16] addresses the noise analysis for a dif-
fusion-based MC system having specific characteristics in terms
of modulation scheme and type of transmitted messages. In [17]
we provided an analysis of the most relevant diffusion-based
noise sources in the end-to-end MC system presented in [18].
Two noise sources are studied in [17], namely, the particle sam-
pling noise and the particle counting noise, and they are related
to the transmitter and to the signal propagation in the channel,
respectively.

The objective of this paper is to analytically model the source
of the reception noise due to the ligand-receptor binding at the
receiver in diffusion-based MC. The goal of this analysis is
to provide both mathematical expressions for the noise source
simulation and closed-form solutions for the noise stochastic
modeling. We follow the same methodology that we used in
[17] for the noise sources at the transmitter and in the diffusion
channel. The reference receiver for this analysis is described in
[16] and in [18], and it is detailed in Section III. The ligand-re-
ceptor binding is modeled in this paper by following two dif-
ferent approaches, namely, through the ligand-receptor kinetics
and through the stochastic chemical kinetics.

The ligand-receptor kinetics model stems from the classical
chemical kinetics, which studies the mathematical description
of time evolution of chemical reactions. Classical chemical
kinetics has been successfully applied to the ligand-receptor
binding analysis in biochemical signaling [19], although it is
valid only where the random perturbations in the chemical
reactions are negligible due to the large number of molecules,
as stated in [20]. The ligand-receptor kinetics model in this
paper is an extension of the classical chemical kinetics formu-
lation that allows us to have a simulation model for the random
perturbations in the ligand-receptor binding.

The stochastic chemical kinetics summarizes the noise
generation by combining tools from chemistry and statistics.
Works such as [21]–[23] provide us with the tools from sto-
chastic chemical kinetics to derive a closed-form solution to the
modeling of the reception noise, as we obtained in [17] with
the stochastic models for the diffusion-based noise.

The remainder of the paper is organized as follows. In
Section II, the existing solutions from the literature for the
diffusion-based molecular communication architectures are
presented and the specific architecture addressed in this paper
is motivated with reference to them. In Section III, the as-
sumptions for the molecular receiver model are introduced and
the ligand-receptor binding at the MC reception is explained.

Fig. 1. Graphical representation of the end-to-end model, inspired by the work
in [18].

The ligand-receptor kinetics is analyzed in Section IV for the
ligand-receptor binding process, while the stochastic chemical
kinetics model is treated in Section V. Simulation results are
provided in Section VI to assess the validity of the reception
noise model in terms of stochastic chemical kinetics and to
compare them to the ligand-receptor kinetics simulations.
Finally, in Section VII, we conclude the paper.

II. DIFFUSION-BASED MOLECULAR COMMUNICATION

ARCHITECTURE

A. Proposed Architectures From the Literature

Different diffusion-based MC architectures have been pro-
posed in the literature on the basis of the technique used to en-
code the information in the diffusing molecules. The three most
referenced architectures encode the information in: i) the time
of molecule release; ii) the type of each molecule; iii) the vari-
ations of the concentration of molecules in the space.

The first type of architecture is theoretically analyzed in [24],
where the authors focus on the mathematical modeling of the
diffusion channel as a probabilistic contribution in the time of
arrival of molecules at the receiver. The simulation results from
[24] in terms of achievable information rate show that, due to
the high uncertainty in the propagation time, this architecture is
characterized by very low capacity.

The second type of architecture is analyzed in [15], where
the diffusion channel part is modeled, together with other types
of non-diffusive channels. Since each molecule carries informa-
tion, a piece of information is received only if its carrier mole-
cule reaches the receiver location. As a consequence, in [15] it
is shown that the diffusion-based channel has very low perfor-
mance for this architecture if compared to other non-diffusive
techniques.

The third type of architecture is treated in [5], [18], [25], and
[26]. In [5] a simplified receiver model of this architecture is
studied, where the diffusion-based channel is coupled with an
ideal molecule emitter at the transmitter location and a single
molecule receptor at the receiver location. Although the simu-
lation results in [5] show low values for the system capacity,
the high similarity of this architecture to the cellular biological
systems, which are characterized by much higher performance,
encourages the investigation in this direction. In [25] and [26],
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Fig. 2. Graphical sketch of the ideal ligand-receptor binding with the assump-
tions from [18].

a model of a diffusion-based MC receiver is developed by using
multiple chemical receptors to read the molecule concentration
at the receiver location. The results in terms of capacity with this
model show relatively high values if compared to [5], especially
when an error compensation technique is applied. Theoretical
results from [27] confirm the high potential in terms of achiev-
able information rates for this type of diffusion-based molecular
communication system. Finally, a complete end-to-end physical
model for the third architecture is proposed in [18]. Although
capacity values are not provided in [18], a framework for the
subsequent study of the performance of the complete end-to-end
system is built.

B. Our Reference Architecture

The reference architecture for this paper is sketched in Fig. 1,
where the diffusion-based MC is modeled in terms of trans-
mission, propagation and reception of particles, as described in
[18]. The Emission Process at the TRANSMITTER encodes
the Input signal into variations in the particle concentra-
tion (Concentration rate at the transmitter).
This encoding is achieved through the release/capture of parti-
cles into/from the environment. The particle concentration rate
is the output of the transmitter and the input of the channel. The
CHANNEL relies on the Diffusion Process of the particles
in the environment to propagate the particle concentration
variations to the receiver. The RECEIVER senses the particle
Concentration at the receiver at its location and
decodes the information into the Output signal. The
Reception Process generates the output signal by means of
chemical receptors through the ligand-receptor binding.

The result of the work in [18] is a mathematical analysis of
the communication channel of Fig. 1, in terms of relation be-
tween the input signal and the output signal. The three pro-
cesses, namely, the particle emission, diffusion and reception,
are analyzed in terms of their contributions to the overall nor-
malized gain and delay between inputs and outputs, as func-
tions of the frequency and the transmission range. Noise effects
arising from random perturbations in the three processes are not
taken into account in [18].

In this paper, we focus on the analysis of the reception process
and its related contribution to the random perturbation of the
signal, as it is decoded by the chemical receptors through the
ligand-receptor binding.

III. THE MOLECULAR RECEIVER MODEL

When a particle concentration , where is the time
variable, is present at the receiver location, the receiver mod-
ulates the output signal according to the rate of change
in the value of itself. The reading of the concentration is
achieved by means of the reception process, which is based on
the chemical theory of the ligand-receptor binding [14]. The
reception process of the end-to-end model from [18], sketched
in Fig. 2, is based on the following assumptions:

• All the processes take place inside the space , which con-
tains a fluidic medium and it has infinite extent in all the
three dimensions.

• A particle is an indivisible object that can be released to,
or collected from, the space .

• When a particle is not being released or collected, it is
subject to the diffusion process in the fluidic medium con-
tained in the space .

• The measure of the particle concentration takes place in-
side the receptor space. The receptor space has a spherical
shape of radius .

• The input particle concentration is considered ho-
mogeneous inside the receptor space and equal to the par-
ticle concentration value at the receiver location.

• The reception is realized by means of chemical recep-
tors.

• The chemical receptors are assumed to homogeneously oc-
cupy the volume of the receptor space.

• Each chemical receptor, at the same time instant , is ex-
posed to the same particle concentration .

• The chemical receptors, when exposed to the particle con-
centration , can remain in their state, namely, bound
or unbound, or they can change their state by undergoing
two possible chemical reactions: the particle binding re-
action if the receptor was previously unbound, or the par-
ticle release reaction if the chemical receptor was previ-
ously bound to a particle.

• The particle binding occurs with a rate , while the par-
ticle release occurs with the rate .

• The output signal of the reception process is the first
time derivative in the number of bound chemical receptors,
denoted as , as described in [18]

(1)

The purpose of the above assumptions is to define a model
inspired by the reception process in cellular systems from bi-
ology. According to this, the chemical receptors are models
of the transmembrane receptors [2] embedded in the plasma
membrane of living cells and involved in the signal transduc-
tion process. In this paper, we do not model the location of
the chemical receptors as if they were on the plasma mem-
brane, but we place them homogeneously in the receptor space.
This allows us to simplify the treatment related to the chemical
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Fig. 3. Block scheme of the reception noise at the receiver.

changes which ultimately lead to the signal transduction. The
signal transduction in biosignaling involves the conversion of a
chemical change (e.g., the change in concentration of the chem-
ical components in the surrounding environment) into informa-
tion. From this point of view, the molecules of the biochemical
components are modeled by the particles and the biological sur-
rounding environment is the receptor space.

The reception noise affects the molecular receiver due to
random fluctuations in the LIGAND-RECEPTOR BINDING
process, represented by the block scheme in Fig. 3. Due to the
effect of this noise contribution, denoted by , the particle
concentration is subject to an unwanted perturbation,
resulting in . As a consequence, this perturbation propa-
gates to the output signal after the reception process.

IV. THE LIGAND-RECEPTOR KINETICS

In this section, we first describe the classical formulation of
the ligand-receptor binding according to the deterministic re-
action rate equation. Second, we introduce the ligand-receptor
kinetics equation as an extension of the reaction rate equation,
which takes into account the randomness in the ligand-receptor
binding process. Finally, we detail the ligand-receptor kinetics
equation through the ligand-receptor kinetics block scheme,
which incorporates all the mathematical relations necessary to
model the random effects in the ligand-receptor kinetics.

A. The Reaction Rate Equation

The ligand-receptor kinetics stems from the definition of
the binding and release reactions in the LIGAND-RECEPTOR
BINDING. The binding reaction and the release reaction are
considered by the assumptions given in Section III as happening
only according to deterministic rates: and , respectively.
This is justified from the viewpoint of the classical chemical
kinetics [19], which interprets the time evolution of a chemical
system with deterministic reaction rate equations (RREs). The
RRE of the chemical system defined by the assumptions from
Section III is expressed as follows:

(2)

where is the number of bound chemical receptors, is
the rate of particle binding, is the particle concentration at
the receiver, is the total number of chemical receptors at the
receiver and is the rate of particle release. In Appendix A,
we detail the mathematical expressions of the particle binding
and release rates.

Given (1), the first time derivative in the number of
bound chemical receptors can be substituted with the output
signal of the reception process.

(3)

Equation (3) is a continuous function, which relates the output
signal of the reception process to the concentration
and the number of bound chemical receptors at time .

B. The Ligand-Receptor Kinetics Equation

The model of the reception process considered so far does not
take into account the random fluctuations in the LIGAND-RE-
CEPTOR BINDING, which stem from the Brownian motion,
since the collision frequency averages the Brownian motion ef-
fects through the average particle velocity in (45); see Appendix
A. We consider now the following additional assumptions:

• Particles inside the receptor space are discrete and they
move according to the Brownian motion.

• The binding reaction can occur only when a particle, sub-
ject to the Brownian motion, collides with an unbound re-
ceptor.

• The binding reaction occurs only if the kinetic energy of
the particle colliding with an unbound receptor is higher
than the activation energy . The kinetic energy of
a particle at time is expressed as follows:

(4)

is the velocity of the particle at time and
is its mass, while denotes the squared absolute value
operator.

• Whenever a binding reaction occurs, there is a subtraction
of a particle from the reception space. Whenever a release
reaction occurs, there is an addition of a particle to the
reception space.

As a result, the relation between the particle concentration
and the actual output signal of the reception process,

denoted by , is subject to random fluctuations due to the
LIGAND-RECEPTOR KINETICS. During the LIGAND-RE-
CEPTOR KINETICS, graphically sketched in Fig. 4, particles
subject to the Brownian motion inside the reception space
contribute to the number of bound chemical receptors, denoted
with , only at discrete time instants , which
correspond to collision events between the particles themselves
and the unbound receptors. Each collision event contributes to

according to the coefficient , which is a function of
the kinetic energy of the collided particle at time . The bound
receptors can become unbound according to the particle release
rate , thus decreasing the actual number . Therefore,
we write a new equation, the ligand-receptor kinetics equation,
by extending the RRE in (2) in order to account for the random
effect of the collisions

(5)
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Fig. 4. Graphical sketch of the LIGAND-RECEPTOR KINETICS: the recep-
tion process and the reception noise � ��� contribution. The time instant � is
in general different from the time instant � , where � �� �.

where is the number of bound chemical receptors, is a
coefficient related to the particle binding at time instant ,
is the rate of particle release and is a Dirac delta function.
Given (1), the first time derivative in the number of bound
chemical receptors can be substituted with the output signal of
the reception process, this time denoted as

(6)
Equation (6) is not a continuous function with respect to the
contribution of the binding reaction, which is expressed through
the sum of Dirac deltas and the coefficient
of particle binding. As a consequence, the contribution of the
LIGAND-RECEPTOR KINETICS creates fluctuations in the
output signal that are not present in the previous formu-
lation of the output of the reception process through (3).

C. The Ligand-Receptor Kinetics Block Scheme

The LIGAND-RECEPTOR KINETICS is represented
though the block scheme shown in Fig. 5. The par-
ticle concentration is the input of the overall

block, whose output signal is
. The LIGAND-RECEPTOR KINETICS block is com-

posed of the ligand-receptor kinetic state block, the integration
block and three multiplication blocks.

The ligand-receptor kinetic state block, as shown in Fig. 6,
takes as input the concentration of the particles inside
the receptor space and returns the signal as output. The
ligand-receptor kinetic state block keeps track of the locations

of all the particles present inside the receptor space at time
through the set :

(7)

where is the number of particles in the receptor space at
time and it is expressed as follows:

(8)

Fig. 5. Block scheme of the LIGAND-RECEPTOR KINETICS.

Fig. 6. Graphical sketch of the ligand-receptor kinetic state block. The number
of particles � ��� in the receptor space depends on the particle concentration
� ��� in input through the expressions in (8).

where is the particle concentration at the receiver and
is the size of the receptor space. is the radius of

the receptor space, and is the operator that rounds the
operand to the nearest integer. In order to realistically simulate
the evolution of , we consider the Brownian motion con-
tribution at every time instant . The expression of the particle
location is written as follows:

(9)

where the Brownian motion components, namely, ,
, and , are random variables with normal distri-

bution, zero mean value and variance equal to , according
to the expression of the Wiener process [28]

(10)

along the directions of the Cartesian axes, namely, , and .
is the diffusion coefficient and is the simulation time step

and it depends on how the ligand-receptor kinetics block sam-
ples the evolution of during the physical model simula-
tion. The smaller is the time step , the closer is the simulation
to the real physical phenomenon of the particle Brownian mo-
tion. Despite in the simulation we are sampling the Brownian
dynamics, the time variable of the number of bound chemical
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receptor is kept continuous. This is due to the fact that
while collisions between particles and unbound receptors can
occur only every time steps, the unbinding reaction occurs
continuously according to (5). The ligand-receptor kinetic state
block keeps also memory of the locations of the unbound
chemical receptors through the set

(11)

where corresponds to the number of unbound chemical
receptors present in the receptor space at time . The number

is computed by taking into account the time differential
in the number of bound chemical receptors coming

from the lower branch of the block scheme at time . The
resulting number of unbound chemical receptors at time

is recursively computed as follows:

(12)

where is the operator that rounds the operand to the
nearest integer. Since for every time instant we assume to have a
uniform distribution of both particles and receptors inside the re-
ceptor space, the probability of having a collision between a par-
ticle and an unbound receptor is uniform. As a consequence, for
every time instant, every unbound receptor has the same proba-
bility of having a collision with a particle. Whenever there is a
collision between a particle and an unbound chemical receptor,
which means that the spherical volume of a particle of radius
from the set has a non-void intersection with the volume
of a receptor of radius from the set , then the ligand-re-
ceptor kinetic block contributes to the output with a Dirac
delta multiplied by the coefficient . The coefficient

is equal to 1 when the kinetic energy of the colliding par-
ticle is higher than the activation energy , and it is 0
otherwise. In case of equal to 1, then the collision success-
fully results in a binding reaction (non-elastic collision). If
is equal to 0, then the binding reaction does not take place and
the particle resumes its Browinan motion from the location of
the collision with the same kinetic energy as before the colli-
sion occurred (elastic collision). The coefficient is computed
through the following expression:

if
otherwise.

(13)

The kinetic energy of the colliding particle at time is
computed through (4), where the velocity of the particle

at time is computed with the following expression:

(14)

where and are the particle location at time
and time , respectively. The activation energy

is computed as a function of the rate of particle binding by
rearranging (43) and (44) from Appendix A as follows:

(15)

where is computed through (43). The time instant corre-
sponds to the moment when a collision between a particle and

an unbound receptor occurs. As a consequence, the output
of the ligand-receptor kinetic block is a sum of Dirac deltas

, each one at a different time instant :

(16)
where is the intersection between the set

and the set , which contains elements only if
there are particle locations with the same value as the locations
of unbound receptors. is the void set.

The multiplication by block receives as input the first
time derivative at time of the number of bound chem-
ical receptors and returns as output its time differential .
The time differential corresponds, when positive, to the
number of particles subtracted from the receptor space due their
binding to previously unbound receptors; when negative, it cor-
responds to the number of particles added to the receptor space
due to their release from previously bound receptors.

The multiplication by block receives as input the time
differential at time in the number of bound receptors,
and it outputs the concentration differential of bound re-
ceptors at time . The value of corresponds to the vari-
ation in the concentration of particles inside the receptor space
given by the binding or the release of particles to/from chem-
ical receptors. The true concentration of particles present
at time inside the receptor space is given by the following ex-
pression:

(17)

where is the time differential of the particle concentra-
tion in input to the LIGAND-RECEPTOR KINETICS.

The integration block receives as input the first time deriva-
tive in the number of bound chemical receptors and gives
as output the number of bound chemical receptors at time
. The output of the integration block is therefore the time

integral

(18)

The multiplication by block receives as input the number
of bound receptors at time and multiplies it by the rate

of release reaction. The output of the multiplication block is then
subtracted from the output of the ligand-receptor kinetics
block. The result of the subtraction is the first time derivative in
the number of bound receptors

(19)

where is computed through (16).
Since it is not possible to always have the knowledge of the

ligand-receptor kinetic state due to the huge amount of infor-
mation and to the randomness in the particle motion, we cannot
analytically compute the value of as a function of
through the ligand-receptor kinetics model of the reception
noise. Using the physical model provided here, we can only
simulate numerically the behavior of the reception noise .
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Fig. 7. Block scheme of the stochastic chemical kinetics applied to the
LIGAND-RECEPTOR BINDING process.

V. THE STOCHASTIC CHEMICAL KINETICS

The reception noise can also have another formulation,
through the stochastic chemical kinetics, which is suitable
when theoretical studies require an analytical expression of
the noise. For this, the reception noise is generated by a
random process, whose contribution corresponds to

(20)

where is the actual particle concentration in input of the
reception process and is the expected particle concen-
tration, where denotes the ensemble average operator. The
expected particle concentration corresponds to the par-
ticle concentration that we would expect in input to the reception
process in the absence of the reception noise

(21)

In this section, we provide the necessary assumptions under-
lying the stochastic models of the reception noise: the reversible
second-order reaction and the reversible first-order reaction sto-
chastic models. As we explain in the following, the latter allows
also to find a closed-form solution for the variance
of the perturbed particle concentration.

A. Stochastic Model Assumptions

In Fig. 7 we show the main block scheme of the LIGAND-
RECEPTOR BINDING process when the stochastic chemical
kinetics is applied to model the reception noise. The random
process , as it is proved in the following, depends on the
value of the particle concentration itself, output from the
diffusion process. The sum of the random process and
the particle concentration is the particle concentration af-
fected by the reception noise .

In order to properly model the random process we con-
sider the following assumptions:

• The particles and the chemical receptors inside the receptor
space are considered as two different types of molecules
(chemical species). For these two chemical species, we as-
sume that the system is “well stirred”, which means that
the particles and the chemical receptors have uniformly
random distributed locations inside the receptor space.

• The assumption of having a “well stirred” system allows
us to describe the ligand-receptor binding process only
accounting for the populations of the chemical species. We
can therefore ignore the description of the system through
the ligand-receptor kinetic state defined in Section IV,
which was composed by the locations of the chemical

receptors and the locations and velocities of the particles
inside the receptor space.

• The populations of the chemical species are described
through two quantities: the number of particles in the
receptor space and the number of bound receptors
at each time instant . The number of unbound receptors
is computed by subtracting the number of bound
receptors from the total number of chemical receptors,
namely .

• As a consequence of the first assumption, the binding re-
action rate is considered as a constant equal to , since,
without accounting for the ligand-receptor kinetic state,
it is not possible to know either the kinetic energy of a
particle colliding with an unbound chemical receptor, nor
when the collision occurs.

Under these assumptions, the value of the population for each
chemical species is never known deterministically, but only in
probability. The stochastic chemical kinetics studies how the
populations of the chemical species evolve in a system due to
chemical reactions. This is achieved by the formulation of the
chemical system through the chemical master equation (CME)
[20]. The CME is a stochastic differential equation that binds
together the populations of the chemical species involved in
the chemical reactions. In the following, we consider two dif-
ferent CMEs, namely, the reversible second-order reaction
and the reversible first-order reaction. Although both of them
can represent the ligand-receptor binding, the former CME is
the most complete formulation but, due to its complexity, it does
not easily provide a closed-form solution. On the contrary, the
latter CME is based on further assumptions and it allows for a
closed-form solution to the problem of the stochastic modeling
of the ligand-receptor kinetics.

B. The Reversible Second-Order Reaction

The reversible second-order reaction is able to model the
changes both in the number of bound receptors and in the
number of particles in the receptor space occurring due
to the binding and release reactions. Whenever a binding/re-
lease reaction occurs, there is a subtraction/addition of a particle
from/to the reception space, and this is taken into account in the
perturbation of the value of the particle concentration in-
side the receptor space. Given this assumption, we can write the
reversible second-order reaction CME for the ligand-receptor
binding, whose schematic relation is

(22)

where is the number of bound chemical receptors,
is the number of particles in the receptor space, and

is the number of unbound chemical receptors, as defined
above. is the size of the receptor space and it divides
the binding reaction rate since here we are dealing with the
number of particles in the receptor space rather than with the
particle concentration . The formulation of the CME for
the ligand-receptor binding states that the first time derivative of
the probability of having bound receptors is equal to the sum
of different terms: the probability of having
bound chemical receptors and having a binding reaction, the
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Fig. 8. Graphical representation of (23) as a Markov chain.

probability of having bound chemical recep-
tors and having a release reaction, the negative of the probability

of having chemical receptors and having either a re-
lease reaction or a binding reaction.

(23)

where is the rate of having a

binding reaction with available unbound recep-
tors and available particles; is the
rate of having a release reaction with bound receptors;

is the rate of having a release reaction with bound re-
ceptors and is the rate of having a
binding reaction with available unbound receptors and

available particles. Equation (23) can be schematically
interpreted in terms of Markov chains [28], as shown in Fig. 8.
According to the theory of Markov chains, each possible value
of the number of bound chemical receptors can represent a fi-
nite state in a state chain. In the Markov chain of Fig. 8, the prob-
ability of having a transition to a higher state number is given
by the probability of being in that state and having a binding
reaction, while the probability of having a transition to a lower
state number is given by the probability of being in that state and
having a release reaction. In order to find a closed-form solution
to the problem of the stochastic modeling of the ligand-receptor
kinetics it is necessary to add a further assumption to the sto-
chastic model and to interpret the system through the reversible
first-order reaction CME, which is explained in the following.

C. The Reversible First-Order Reaction and Closed-Form
Solution

The reversible first-order reaction is based on a further as-
sumption which is formulated as follows:

• The number of particles in the receptor space for any
time instant is much higher than the number of chem-
ical receptors.

As a consequence, the particle concentration in input
to the ligand-receptor binding process is not affected by the
binding or release reactions occurring between the particles
and the chemical receptors. For this, even if, whenever a
binding/release reaction occurs, there is a subtraction/addition
of a particle from/to the reception space, the perturbation in
the value of the particle concentration inside the receptor
space is negligible. Given this assumption, we can write the

Fig. 9. Graphical representation of (25) as a Markov chain.

CME for the ligand-receptor binding process as a reversible
first-order reaction, whose schematic relation is

(24)

where is the number of bound chemical receptors and
is the number of unbound chemical receptors, as de-

fined above. The formulation of the CME for the ligand-receptor
binding states that the first time derivative of the probability of
having bound receptors is equal to the sum of different terms:
the probability of having bound chemical re-
ceptor and having a binding reaction, the probability
of having bound chemical receptors and having a re-
lease reaction, the negative of the probability of having

chemical receptors and having either a release reaction or a
binding reaction

(25)

where is the rate of having a binding re-
action with available unbound receptors;
is the rate of having a release reaction with bound recep-
tors; is the rate of having a release reaction with bound
receptors, and is the rate of having a binding
reaction with available unbound receptors. Equation
(23) can be schematically interpreted in terms of Markov Chains
[28], as shown in Fig. 9. We can interpret the Markov chain of
Fig. 9 in the same way as we did for Fig. 8, where, this time,
the probability of having a transition to a higher state number
does not account for the number of particles in the receptor
space, but only for the value of the particle concentration .
The solution to the problem of the stochastic modeling of the
ligand-receptor kinetics can be found through a similar proce-
dure as in [21]. We express (25) in terms of Probability Gener-
ating Function [28] , which is defined as follows:

(26)

where is an auxiliary variable and is a time variable which is
ranging from to . is the bandwidth of the particle con-
centration in input to the stochastic model. According to
the Nyquist theorem [29], we can sample the particle concentra-
tion with a rate equal to without loss of information.
During a sampling time interval from to spanned by ,
we can consider only one sample of the concentration signal

. As a consequence, we can solve (25) treating as a
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constant parameter. The CME in (25) can be expressed in terms
of Probability Generating Function as follows:

(27)

We impose to the Probability Generating Function to have at
a number of bound receptors equal to the

number of bound receptors that we would expect in the
absence of noise and at chemical equilibrium, given the particle
concentration in the receptor space from the pre-

vious time interval , which is computed by setting to zero

the derivative of the RRE in (2) and solving for :

(28)

which means that the probability of having bound receptors
at time is equal to 1. As a consequence, the Probability
Generating Function assumes at time the value

(29)

Accounting for (29), we can solve (27) with respect to the Prob-
ability Generating Function : [see (30) at the bottom
of the page] where , , , and

. This allows to find the average value and
the variance of the number of bound recep-
tors at time according to the properties [28] of the Probability
Generating Function as follows:

(31)

(32)

The final expressions for the average value and the vari-
ance become

(33)

(34)

The perturbed particle concentration is computed from the
value of the number of bound receptors through the steady-state
solution of the RRE in (2)

(35)

which is computed from (28) by substituting with
and with and by solving for . By substituting
the value of from (28) into (33) and by applying the ap-
proximation , the average value of the
perturbed particle concentration computed by averaging
(35) is equal to the particle concentration that we would
expect in input to the reception process without the contribution
of the reception noise

(36)

The variance of the perturbed particle concentra-
tion can be approximated through the formula for the variance
of a function of a random variable of known variance and av-
erage [28]

(37)

valid for , and where and are
computed through (33) and (34), respectively, is the total
number of chemical receptors, is the rate of the binding re-
action and is the rate of the release reaction.

VI. NUMERICAL RESULTS

In this section, we present a numerical analysis of the recep-
tion noise models. Sets of noise data realizations are generated
through simulation of both the ligand-receptor kinetics model
and the stochastic chemical kinetics model. The sets of noise
data realized using the ligand-receptor kinetics model are then
used to assess the performance of the analytical formulations of
the reception noise in terms of stochastic chemical kinetics.

A. Ligand-Receptor Binding Simulations

The simulations of the ligand-receptor kinetics are computed
by applying a sinusoidal signal in the particle concentration

to the scheme in Fig. 5

(38)

where is the frequency of the sinusoid in Hz, is the value
of the maximum particle concentration, expressed in particles

, and is the simulation time index in msec.

(30)
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Fig. 10. The input of the ligand-receptor kinetics and stochastic chemical ki-
netics simulations in terms of particle concentration.

We used a simple modulation waveform, a sinusoid, to
produce easy to read graphical results. Moreover, the sinu-
soidal waveform spans the concentration values from 0 to the
maximum value and it allows for the computation of the
noise contribution for all the values in this range. Since we do
not account for a time correlation model in the noise statistical
parameters of the stochastic chemical kinetics, in this paper we
are not interested in the analysis of different waveforms in input
to the receiver and on their distortion due to the reception noise.

The input of the ligand-receptor kinetics simulation is the
particle concentration in (38), sum of a sinusoid and
a constant value , since cannot have negative values.
The sinusoid has frequency equal to 4/5 Hz. We carried out
two sets of simulations: in the first set, the amplitude of the
input sinusoid is equal to the value of 5000 particles ,
while for the second set, the value of is 500 particles ,
as shown in Fig. 10. The values for the particle concentration

are quantized with respect to the number of particles
ranging from 0 to , even if, due to the high values of the
parameter , the quantization of the sinusoidal curves is not
clearly visible in Fig. 10. These two different values in the
simulations enable to validate the property of the reversible
first-order reaction model to approximate the output of the
reversible second-order reaction model when the number of
particles inside the receptor space is much higher than the
number of chemical receptors, which is a valid assumption
only for the first set of simulations. All the simulations run for
5 sec by steps of .

The simulations are carried out using the following values for
the system parameters: the radius of the reception space is

, the binding reaction rate is set to ,
and the release reaction rate is set to [1/s], with
reference to [14]; the number of receptors present inside the
receptor space is set to , while the particle diffu-
sion coefficient, used in the ligand-receptor kinetics, is set to

of calcium molecules diffusing in a bi-
ological environment (cellular cytoplasm, [30]). The radii of a
particle and a chemical receptor are set equal to 1 nm.

Fig. 11. The output of the first set of simulations of the ligand-receptor kinetics
model in terms of number of bound chemical receptors (left) and isolated noise
contribution (right).

The ligand-receptor binding is simulated through two dif-
ferent models, namely, the ligand-receptor kinetics and the sto-
chastic chemical kinetics. The former is simulated through the
LIGAND-RECEPTOR KINETICS, schematically represented
in Fig. 5, while the latter is simulated through the CME of the re-
versible second-order reaction from (23) and Fig. 8 and through
the CME of the reversible first-order reaction from (25) and
Fig. 9.

In the simulation of the ligand-receptor kinetics model par-
ticles are generated inside the receptor space at random loca-
tions whenever the particle concentration increases. Par-
ticle deletion is randomly performed inside the receptor space
whenever decreases. Through particle generation and par-
ticle deletion, we control the number of particles in the
receptor space, which is a parameter of the ligand-receptor ki-
netic state block shown in (7). The number of particles
in the receptor space depends from the particle concentration

through the relation in (8). The Brownian motion of the
particles is modeled according to (9). Samples contributing to
the value of the number of bound chemical receptors are
generated by applying (13) and (16) with the knowledge of the
results from (4) and (14). The final results in terms of is
achieved by applying (18) and (19).

The results of the first set of simulations of the ligand-receptor
kinetics model are shown in Fig. 11 in terms of the number
of bound chemical receptors (left) and in terms of the pertur-
bation of around the average value (right), which corre-
sponds to the isolated noise contribution. Fig. 11 shows how
the LIGAND-RECEPTOR KINETICS affects the value of
more heavily when the input particle concentration and
the resulting have a lower value. This result is a conse-
quence of the fact that when there are fewer particles inside the
receptor space, the fluctuations in the number of bound chemical
receptors are comparable in magnitude to the average number of
bound receptors itself.

For the stochastic chemical kinetics model, we repro-
duce the behavior of the Chemical Master Equations studied in
Section V through simulations of the Markov chains sketched in
Fig. 8 and Fig. 9, respectively. For the reversible second-order
reaction we use (23), while for the reversible first-order
reaction we use (25).

The results of the first set of simulations of the stochastic
chemical kinetics model are shown in Fig. 12 and Fig. 13 in
terms of the number of bound chemical receptors (left)
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Fig. 12. The output of the first set of simulations on the reversible second-
order reaction model in terms of number of bound chemical receptors (left) and
isolated noise contribution (right).

Fig. 13. The output of the first set of simulations on the reversible first-order
reaction model in terms of number of bound chemical receptors (left) and iso-
lated noise contribution (right).

and the perturbation of around the average value (right)
for the reversible second-order reaction and the reversible first-
order reaction, respectively. The results for the two types of re-
actions show similar values to the results of the model of the
ligand-receptor kinetics, shown in Fig. 11.

The results of the second set of simulations for the ligand re-
ceptor kinetics, the reversible second-order reaction and the re-
versible first-order reaction are shown in Fig. 14, Fig. 15 and
Fig. 16, respectively. The reversible second-order reaction has
values closer to the model of the ligand-receptor kinetics if com-
pared to the reversible first-order reaction. This is a consequence
of the fact that the reversible second-order reaction model ac-
counts for the effects of the binding or release reactions on the
input particle concentration . The reversible first-order re-
action is an approximation of the real behavior of the ligand-
receptor kinetics: the higher is the number of particles inside
the receptor space than the number of chemical receptors, the
closer is the reversible first-order reaction to reality. Since for
the second set of simulations we used a number of particles
inside the receptor space closer to the number of chemical re-
ceptors, the difference of the results from the reversible first-
order reaction with respect to the results from the ligand-re-
ceptor kinetics are more evident. The reversible first-order re-
action model overestimates the number of particles present in-
side the receptor space, while the reversible second-order reac-
tion model realistically accounts for a depletion of the particles
when these bind to the receptors.

B. The Statistical Likelihood Test

The statistical likelihood test is applied to prove that the ana-
lytical formulation of the reception noise in terms of stochastic

Fig. 14. The output of the second set of simulations on the ligand-receptor ki-
netics model in terms of number of bound chemical receptors (left) and isolated
noise contribution (right).

Fig. 15. The output of the second set of simulations on the reversible second-
order reaction model in terms of number of bound chemical receptors (left) and
isolated noise contribution (right).

Fig. 16. The output of the second set of simulations on the reversible first-
order reaction model in terms of number of bound chemical receptors (left) and
isolated noise contribution (right).

chemical kinetics provides a good model of the behavior of the
ligand-receptor kinetics. For this, we compute the likelihood,
that is, the probability of having a number of bound chemical
receptors , given a stochastic chemical kinetics models de-
fined in Section V, and then we compare the results with the
value of the number of bound receptors from the simulation of
the ligand-receptor kinetics model.

The likelihood of the stochastic chemical kinetics models is
evaluated for a range of different values for the number of bound
chemical receptors as follows:

likelihood (39)

where ranges from 1 to bound chemical receptors for
every time instant and is the result of the simulation
of the model of the ligand-receptor kinetics. The results are
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Fig. 17. The reversible second-order reaction log-likelihood for the first set of
simulations.

Fig. 18. The reversible first-order reaction log-likelihood for the first set of
simulations.

shown for the reversible second-order reaction and for the re-
versible first-order reaction in Fig. 17 and Fig. 18, respectively,
for the first set of simulations. The highest likelihood value cor-
responds, for every time instant , to the value of the number
of bound receptors in Fig. 11 (left), thus visually confirming
that the best particle concentration model parameter for the sto-
chastic chemical kinetics model is actually the number
of bound chemical receptors in output from the model of the
ligand-receptor kinetics. A noticeable characteristic in Fig. 17
and Fig. 18 is the asymmetry of the values between a time in-
terval where the input sinusoid increases and a time interval
where it decreases. This is also evident in Fig. 14, Fig. 15 and
Fig. 16. This phenomenon is created by the difference between
the values of the rates and , where , which results
in a slower increase in the number of bound chemical receptors
than a corresponding decrease. This is even more evident for a
lower number of particles in the receptor space.

These statistical likelihood test results shown in Fig. 17
and Fig. 18 are compared to the results obtained through

Fig. 19. The log-likelihood of a Gaussian model for the first set of simulations.

the use of a Gaussian model in place of the stochastic
chemical kinetics model. The Gaussian model, denoted by

, has the same expected value and the
same variance as the stochastic chemical kinetics model for the
reversible first-order reaction, from (33) and (34), respectively.
The likelihood formula is

likelihood

(40)

where ranges from 1 to bound chemical receptors for
every time instant . is the result of the simulation of

the model of the ligand-receptor kinetics, where .
When the Gaussian model is applied, the likelihood shows lower
values than when using the stochastic chemical kinetics model.
On average, the likelihood values shown in Fig. 19 are much
lower than the values in Figs. 17 and 18, and this proves that
the stochastic chemical kinetics model performs better than the
Gaussian model. These results confirm the validity of the sto-
chastic chemical kinetics model presented in this paper.

The results of the second set of simulations in terms of statis-
tical likelihood are shown for the reversible second-order reac-
tion, the reversible first-order reaction and the Gaussian model
in Figs. 20, 21, and 22, respectively. The same conclusions as
for the first set of simulations can be drawn from these results,
even if now the likelihood values for the reversible second-order
reaction are noticeably different from the reversible first-order
reaction. This is given by the fact that for the second set of sim-
ulations the number of particles inside the receptor space is not
consistently higher than the number of chemical receptors, with
the above explained consequences on the reversible first-order
reaction.

Finally, we computed the Kullback-Leibler (K-L) distance
[28] K-L(M) of each stochastic model M from the data gen-
erated through the ligand-receptor kinetics by applying the fol-
lowing formula:

(41)
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Fig. 20. The reversible second-order reaction log-likelihood for the second set
of simulations.

Fig. 21. The reversible first-order reaction log-likelihood for the second set of
simulations.

Fig. 22. The log-likelihood of a Gaussian model for the second set of
simulations.

where is the result of the simulation using the model of
the ligand-receptor kinetics. The results in terms of K-L dis-

TABLE I
KULLBACK-LEIBLER DISTANCE

tance are shown in Table I, where values closer to 1 indicate a
better matching between the data and the stochastic model. As
expected, the values for the stochastic chemical kinetics models
are closer to 1 with respect to the values for the Gaussian model.
Moreover, the difference in the K-L distance values between the
reversible second-order and the reversible first-order reaction
models increases for the second set of simulations, where the
assumption for the validity of the reversible first-order reaction
is no longer valid.

VII. CONCLUSIONS

In this paper, we analyzed the source of the reception noise
due to the ligand-receptor binding at the receiver in a diffusion-
based Molecular Communication (MC) system. Contributions
from the literature to the noise analysis for diffusion-based MC
are mainly based on the results of simulations and do not provide
closed-form solutions to the modeling of the noise sources. The
reference MC architecture for this paper is described in [18],
where the diffusion-based MC is modeled in terms of trans-
mission, propagation and reception of particles and the infor-
mation encoding is realized through the modulation of the con-
centration of molecules in the space. The choice of this archi-
tecture is motivated by results from the literature related to the
information-theoretical analysis of various diffusion-based MC
systems.

The ligand-receptor binding is modeled in this paper by fol-
lowing two different approaches, namely, through the ligand-re-
ceptor kinetics and through the stochastic chemical kinetics.
The goal of this analysis is to provide both mathematical ex-
pressions for the noise source simulation and closed-form solu-
tions for the noise stochastic modeling at the receiver, as we pro-
vided in [17] for the noise sources at the transmitter and in the
diffusion channel. The ligand-receptor kinetics stems from the
classical chemical kinetics, which is the discipline that studies
how the time evolution of chemical reactions can be described
in terms of mathematical models. The stochastic chemical ki-
netics provides us with the tools to derive a closed-form solution
for modeling the reception noise. The results of the ligand-re-
ceptor kinetics analysis are summarized through a block scheme
which expands the reception process of the end-to-end physical
model from [18]. The stochastic chemical kinetics analysis re-
sults in a twofold characterization in terms of random processes,
namely, the reversible second-order reaction and the reversible
first-order reaction chemical master equations, and in the analyt-
ical expression of the variance of the noise on the output signal
from the reception process.

Simulations are shown to prove that the analytical formula-
tion of the reception noise in terms of stochastic chemical ki-
netics is compliant with the reception noise behavior resulting
from the simulations of the ligand-receptor kinetics model.
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The analysis of the reception noise provided in this paper and
the results in terms of mathematical modeling will serve to ex-
pand the knowledge on diffusion-based MC system and to sup-
port further investigation on its performance in terms of capacity
and throughput. This paper provides an initial study on the re-
ception noise source stemming from the ligand-receptor binding
theory and we envision that further study will be conducted on
the basis of these results.

APPENDIX A
PARTICLE BINDING AND RELEASE RATES

The rate of particle binding is defined in chemical kinetics
[31] as follows:

(42)

where is the average collision frequency, is the activation
energy of the ligand-receptor binding and is the fraction
of collisions having a higher energy than the activation energy.
The average collision frequency quantifies how frequently a
collision occurs between a particle and an unbound receptor and
it is expressed as follows:

(43)

where is the concentration of particles at the receiver,
is the average number of particles inside the receptor

space, is the average number of unbound chemical
receptors, and are the radius of a particle and a receptor
in the system, respectively, and is the average velocity
of the particles. The fraction of collisions having a
higher energy than the activation energy is expressed through
the Boltzmann distribution [32] as

(44)

where is the activation energy, is the absolute temperature
of the system, and is the Boltzmann constant. The average
collision frequency depends on the average velocity of
the particles subject to the Brownian motion and it is known
from the kinetic theory [32] to have the following expression:

(45)

where is the Boltzmann constant, is the absolute temper-
ature of the system and is the mass of a particle.

The rate of particle release is defined in transition state
theory [33] as follows:

(46)

where is the Boltzmann constant, is the absolute tempera-
ture of the system, is the Planck constant, is the vibrational
frequency of the bond, is the unbinding energy at absolute
zero, and is the universal gas constant.
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