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Abstract—Cognitive radio networks have been proposed as a solution to both spectrum inefficiency and spectrum scarcity problems.

However, they face to a unique challenge based on the fluctuating nature of heterogeneous spectrum bands as well as the diverse

service requirements of various applications. In this paper, a spectrum decision framework is proposed to determine a set of spectrum

bands by considering the application requirements as well as the dynamic nature of spectrum bands. To this end, first, each spectrum

is characterized by jointly considering primary user activity and spectrum sensing operations. Based on this, a minimum variance-

based spectrum decision is proposed for real-time applications, which minimizes the capacity variance of the decided spectrum bands

subject to the capacity constraints. For best-effort applications, a maximum capacity-based spectrum decision is proposed where

spectrum bands are decided to maximize the total network capacity. Moreover, a dynamic resource management scheme is

developed to coordinate the spectrum decision adaptively dependent on the time-varying cognitive radio network capacity. Simulation

results show that the proposed methods provide efficient bandwidth utilization while satisfying service requirements.

Index Terms—Cognitive radio networks, spectrum decision, spectrum characterization, real-time application, best-effort application,

minimum variance-based spectrum decision, maximum capacity-based spectrum decision, resource management.
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1 INTRODUCTION

TODAY’S wireless networks are characterized as a static

spectrum assignment policy. Recently, because of the

increase in spectrum demand, this policy is faced with

spectrum scarcity at particular spectrum bands. On the

contrary, a large portion of the assigned spectrum is still

used sporadically leading to underutilization of the sig-
nificant amount of spectrum [9]. Hence, dynamic spectrum

access techniques have recently been proposed to solve these

spectrum inefficiency problems.

The key enabling technology for dynamic spectrum

access techniques is the cognitive radio technology, which

provides the capability to share the wireless channel with

licensed users (or primary users) in an opportunistic manner

[1]. Cognitive radio (CR) networks are envisioned to provide

high bandwidth to mobile users via heterogeneous wireless

architectures and dynamic spectrum access techniques. CR

networks, however, impose unique challenges because of

the high fluctuation in the available spectrum as well as the

diverse quality-of-service (QoS) requirements of various

applications. To address these challenges, first, CR networks

are required to determine which portions of the spectrum

are available, called spectrum sensing [2], [10]. Furthermore,

how to coordinate multiple CR users to share the spectrum

band, called spectrum sharing, is another important issue in

CR networks [7], [16].

Although all these efforts enable CR users to exploit
spectrum opportunities effectively, the heterogenous spec-
trum environment introduces a new critical issue in CR
networks. Generally, CR networks have multiple available
spectrum bands over a wide frequency range that show
different channel characteristics, and need to support
applications with diverse service requirements. Therefore,
once available spectrum bands are identified through
spectrum sensing, CR networks need to select the proper
spectrum bands according to the application requirements.
This process is referred to as spectrum decision, which
constitutes an important but yet unexplored topic in CR
networks. To decide on spectrum bands properly, CR
networks need to consider the following issues:

. All available spectrum bands show different
characteristics in the CR network. To select the
proper spectrum, the CR network needs to char-
acterize available spectrum bands by considering
current radio conditions as well as the primary
user (PU) activity.

. The CR network needs to provide a dynamic
decision framework to consider all possible events
that prevent reliable communications by closely
interacting with other CR functionalities such as
spectrum sensing and spectrum sharing.

. According to the PU activities, total capacity in CR
networks varies over time, which makes it more
difficult to decide on spectrum bands while
maintaining the service quality of other CR users.
Thus, the CR network should perform spectrum
decision adaptively dependent on time-varying
spectrum resources.

In this paper, an adaptive spectrum decision framework is
proposed with the consideration of all decision events and
application types. First, a novel capacity model is developed
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to describe unique characteristics in CR networks by
considering PU activity as well as sensing capability.
Accordingly, two different decision schemes are introduced.
To satisfy the delay constraints in real-time applications, we
propose a minimum variance-based spectrum decision
(MVSD) scheme that selects spectrum bands to minimize
capacity variation. For best-effort applications, we propose a
maximum capacity-based spectrum decision (MCSD)
scheme to maximize the total network capacity. Both
decision schemes are controlled by a proposed resource
management based on the current network condition.

The remainder of the paper is organized as follows:
Section 2 presents previous research and our motivation. In
Section 3, we propose a novel framework for spectrum
decision. In Section 4, we present a spectrum capacity
model used in this paper. Spectrum decision methods for
real-time and best-effort applications are proposed in
Sections 5 and 6, respectively. Then, we develop a dynamic
resource management scheme in Section 7. Simulation
results are presented in Section 8. Finally, conclusions are
presented in Section 9.

2 MOTIVATION

2.1 Related Work

The proposed spectrum decision has a similar objective to
the spectrum sharing in the sense that it performs resource
allocation based on service requirements. Most of the
research on spectrum sharing in CR networks has mainly
focused on how to efficiently allocate either spectrum or
power among CR users subject to interference constraints.

For spectrum allocation, a global optimization scheme is
developed based on graph theory [17]. However, whenever
the network topology changes according to the node
mobility, the network needs to completely recompute
spectrum assignment leading to a higher computational
and communication overhead. To solve this problem, a
distributed spectrum allocation based on local bargaining is
proposed in [4], where CR users negotiate spectrum
assignment within local self-organized groups. For the
resource-constrained networks such as sensor and ad hoc
networks, a rule-based spectrum management is proposed,
where CR users access the spectrum independently accord-
ing to both local observation and predetermined rules [5]. In
[20], a dynamic channel selection scheme is developed for
delay-sensitive applications based on a priority queuing
analysis and a decentralized learning algorithm.

Power allocation among CR users competing the same
spectrum is another important issue in spectrum sharing. In
[12], an optimal power allocation scheme is proposed to
achieve ergodic and outage capacity of the fading channel
under different types of power constraints and fading
models. In [22], joint beam-forming and power allocation
techniques are presented to maximize the user capacity
while ensuring the QoS of primary users. Game theory
provides an efficient distributed spectrum sharing scheme
by describing the conflict and cooperation among CR users,
and hence allowing each user to rationally decide on its best
action. Thus, it has been widely exploited for both channel
allocation [16] and for power allocation [7].

2.2 Implementation Challenge in Spectrum
Decision

All of the previous research explained above has mainly
addressed spectrum sharing issues where all operations
are performed within the same spectrum band or across
contiguous channels. Furthermore, to adapt the fast time-
varying channels, they are generally designed as a short-
term operation, such as a packet-based or a time-slot-
based scheduling.

However, CR networks necessitate an additional re-
source allocation capability when primary users are
detected or CR users newly begin their sessions, which
are relatively long-term events. Thus, this capability should
consider longer-term channel characteristics, compared to
spectrum sharing. In addition, since available spectrum
bands are distributed over a wide frequency range, this
function needs to be implemented as an interspectrum
operation. However, this operation inevitably introduces an
additional switching delay leading to service quality
degradation. Thus, it is not desirable to extend existing
spectrum sharing solutions designed to adapt to the fast
time-varying channel to the long-term interspectrum opera-
tion. This unique challenge in CR networks has not been
addressed in previous research. Here our design objective
of the spectrum decision framework is to decouple all inter-
spectrum functionalities totally from spectrum sharing.

3 THE PROPOSED SPECTRUM DECISION

FRAMEWORK

3.1 System Model

In this paper, we consider an infrastructure-based CR
network that has a centralized network entity, such as a
base-station. The base-station exerts control over all CR
users within its transmission range. CR users perform the
observations and analysis on radio environments and feed
them to the central base-station, which decides on spectrum
availability and spectrum allocation. Each CR user has
multiple software-defined radio (SDR) transceivers to
exploit multiple spectrum bands over a wide frequency
range by reconfiguring the operating frequency through
software operations. Here, we assume frequency division
duplex (FDD) systems where uplink and downlink chan-
nels are separated. Thus, the proposed decision scheme can
be applied to each link independently.

When primary users appear in the spectrum band, CR
users need to move to a new available band, resulting in a
temporary communication break. To solve this problem, we
assume that multiple noncontiguous spectrum bands can be
simultaneously used for the transmission in the CR net-
work. This method can create a signal that is not only
capable of high data throughput, but is also immune to the
PU activity. Even if a primary user appears in one of the
current spectrum bands, the rest of them will maintain
current transmissions [1].

The control channel plays an important role in ex-
changing information regarding sensing and resource
allocation. Several methods are presented in [3], one of
which is assumed to be used as the common control
channel in our proposed method.
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3.2 Framework Overview

Based on the system model above, we develop a novel
framework for spectrum decision. Here, spectrum decision
is considered as an event-based functionality, i.e., the CR
network decides on the proper spectrum bands in the
following events:

. CR user appearance: When a new CR user appears in
the CR network, it needs to be assigned to new
spectrum bands for its transmission.

. Primary user appearance: When a primary user
appears in the spectrum band, CR users should
move to the new spectrum bands.

. Channel quality degradation: When channel condition
becomes worse, CR users want to switch to a better
spectrum band.

To consider all decision events effectively, the CR
network necessitates a unified framework for spectrum
decision. Fig. 1 shows the proposed framework for
spectrum decision. A detailed description of this framework
is as follows.

By considering current spectrum conditions, a resource
manager determines if the CR network accepts a new
incoming CR user or not. If a new CR user is allowed to
transmit, it is assigned to the proper spectrum bands
through spectrum decision. Since there may be multiple CR
users competing the same spectrum, spectrum sharing
coordinates those multiple accesses to prevent collisions,
and accordingly to achieve the maximum capacity. In the
event detection, current spectrum bands and users connec-
tions are monitored to detect decision events. The event
detection consists of two main tasks: spectrum sensing and
quality monitoring. When events are detected, the CR
network reconfigures its resource allocation to maintain
the service quality. In case of short-term channel variations
such as fast fading, the CR network reallocates resources
within the spectrum band through spectrum sharing. If a
primary user is detected or the current spectrum band
cannot provide the predetermined service quality any
longer over a long-term period, the CR network switches
the spectrum through the resource manager and the
spectrum decision. In the proposed framework, CR users
perform only event detection. Based on information
gathered from CR users, the base-station decides on
spectrum availability and performs spectrum decision as
explained above.

Consequently, the proposed spectrum decision frame-
work provides a hierarchical QoS guaranteeing scheme:
spectrum sharing to allocate the channel and transmission

power for short-term service qualities, and spectrum
decision to determine the best spectrum for maintaining
the service quality over a long term period. In this paper, we
mainly focus on decision functionalities: spectrum decision
and resource management. Spectrum sharing and event
detection functionalities are out of the scope in this paper.

3.3 Spectrum Decision Functionalities

In the proposed framework, we consider two types of
applications: real-time and best-effort (in this paper, the terms
“application” and “user” are interchangeably used). Ac-
cording to the application type, the proposed spectrum
decision can be classified into a minimum variance-based
spectrum decision for real-time applications, and a maximum
capacity-based spectrum decision for best-effort applications.

Decision events mainly occur because of either user
activities or quality degradations. When primary user
appears in the spectrum band or a new CR user begins to
transmit, the spectrum decision needs to be initiated.
Moreover, the quality degradation of either an entire
spectrum band (e.g., increase in interference) or a specific
user connection (e.g., moving far from the base-station) can
also trigger spectrum decision.

If a CR user exploits multiple spectrum bands, the
spectrum decision method becomes more complicated
according to the event type. When a new CR user appears
or the QoS of a certain user becomes worse, multiple
spectrum bands need to be determined for a single user at a
time, called single selection (SS). On the other hand, when a
primary user appears or the quality of a certain spectrum
band becomes worse, multiple CR users residing in that
spectrum band lose one of their current spectrum bands,
which requires multiple spectrum decisions for each CR
user, called multiple selections (MS).

As shown in Fig. 2, according to the traffic and event types,
spectrum decision can be classified into four categories:
MVSD-SS, MVSD-MS, MCSD-SS, and MCSD-MS, which are
proposed in Sections 5.1, 5.2, 6.1, and 6.2, respectively.

For ease of representation, the important notations used
in the subsequent discussion are summarized in Table 1.

4 SPECTRUM CHARACTERIZATION

To determine the spectrum band properly, it is important to
identify the characteristics of each spectrum. To this end, in
this section, we define the PU activity, and accordingly
propose a novel CR capacity model.
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4.1 Primary User Activity

For an efficient spectrum utilization, the CR network needs to
be aware of the traffic statistics of primary networks in each
spectrum, called PU activity. The PU activity can be modeled
as exponentially distributed interarrivals [21]. In this model,
the PU activity in spectrum i is defined as a two-state birth-
death process with death rate �i and birth rate �i. An ON
(busy) state represents the period used by primary users and
an OFF (idle) state represents the unused period [6], [13].

4.2 Cognitive Radio Capacity Model

In the CR network, the available spectrum bands are not
contiguous and may be distributed over a wide frequency
range with a different bandwidth. For more flexible
manipulation of heterogenous spectrum bands, we employ
an orthogonal frequency division multiplexing (OFDM) as a
physical layer technology, where each spectrum band i has
a different bandwidth Bi, consisting of multiple subcarriers.
Usually, each subcarrier has a different channel gain and a
noise level that are time-varying. However, when we
consider long-term spectrum characteristics, both fast and
frequency selective fading effects are mitigated, and hence
we can say the channel gain and noise level in the same
spectrum are identical over a long-term period. If transmis-
sion power is also identical within the spectrum, a normal-
ized channel capacity ciðkÞ (bits/sec/Hz) of spectrum band
i can be expressed as ciðkÞ ¼ riðkÞ=Bi, where riðkÞ is the
capacity of user k when all subcarriers in spectrum i are
assigned to user k.

However, in CR networks, each spectrum i cannot
provide its original capacity ciðkÞ. First, CR users cannot
have a reliable spectrum permanently and need to move
from one spectrum to another according to the PU activity,
which introduces the so-called spectrum switching delay.
During the switching time, the transmission of the CR user
is temporarily disconnected. Here, spectrum switching
delay includes times for the spectrum decision process in
the base-station, signaling for establishing new channels,
and RF front-end reconfiguration. In IEEE 802.22 Wireless
Regional Area Network (WRAN), switching delay is
required to be less than 2 sec [11]. Also conventional
mobile broadcasting systems, for example, Qualcomm’s
MediaFLO, show an average physical layer channel switch-
ing delay up to 1.5 sec [18]. Depending on the development
of the hardware technology, we believe that it will be much

shorter but still be a significant factor to influence the
network performance. Furthermore, CR users are not
allowed to transmit during sensing operations, leading to
the periodic transmissions with sensing efficiency �i [13].

These unique features in CR networks show a significant
influence on the spectrum capacity CiðkÞ. To describe all
these stochastic activities, we define a new capacity notion,
the so-called CR capacity CCR

i ðkÞ, which is defined as the
expected normalized capacity of user k in spectrum i as
follows:

CCR
i ðkÞ ¼ E½CiðkÞ� ¼

T off
i

T off
i þ �

� �i � ciðkÞ; ð1Þ

where � represents the spectrum switching delay, and T off
i

is the expected transmission time without switching in
spectrum i. Since CR users face to the spectrum switching
after the idle period, the first term in (1) represents the
transmission efficiency when CR users occupy spectrum i.

If we consider perfect sensing, i.e., both false alarm and
detection error probabilities are zero, T off

i is obtained as 1=�i,
which is the average idle period based on the ON-OFF model
in Section 3. On the contrary, in case of imperfect sensing, we
should account for the influence of sensing capability. Let �t
be a sensing period. Then, the average number of sensing
slots in the idle period ns is d1=�i=�te. From this, the
expected transmission time can be obtained as follows:

T off
i ¼ �t �

Xns�1

k¼1

k �
�
1� P f

i

�k � P f
i þ

1

�i
�
�
1� P f

i

�ns

¼ �t �
� �

1� P f
i

��
1�

�
1� P f

i

�ns�1�
P f
i

� ðns � 1Þ �
�
1� P f

i

�ns

�
þ 1

�i

�
1� P f

i

�ns ;

ð2Þ

whereP f
i represents a false alarm probability of spectrum i at

each sensing slot. Here, T off
i can be expressed as the sum of

the expected durations until when the false alarm is first
detected in each slot. AsP f

i increases,T off
i decreases, resulting

in decrease in CR capacity, which is described in Fig. 3. Here,
we consider a cooperative sensing scheme based on “OR”
fusion, where its detection error probability converges to 0 as
the number of users increases [15]. Thus, the detection error
probability can be ignored in estimating CR capacity.

5 SPECTRUM DECISION FOR REAL-TIME

APPLICATIONS

Real-time applications are sensitive to delay and jitter.
Moreover, they require a reliable channel to support a
sustainable rate during the session time. Thus, real-time
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applications have strict constraints on the delay bound
and the sustainable rate. Generally, real-time applications
drop the packets not arrived within the delay bound.
Even though the network can support sustainable rate Rs

on average, packets can be delayed and finally discarded
in the receiver due to the variation of channel capacity, as
shown in Fig. 4.

Unlike conventional wireless networks, the CR network
has unique delay factors. When CR users either sense or
switch the spectrum, they need to stop transmission
temporarily, which prevents the real-time application from
maintaining its sustainable rate, leading to delay and jitter.
To observe the effect of the delay uniquely shown in CR
networks, we assume that a buffering scheme is optimized
to absorb delay factors in conventional wireless networks,
such as application layer, link layer, and transmission
delays. Then, the additional delay factors uniquely intro-
duced by CR networks can directly lead to data losses. For
this reason, we use the data loss rate to evaluate the service
quality of real-time applications. Also real-time applications
are assumed to have a set of discrete sustainable rates and to
adjust their rates through the negotiation flexibly.

According to the decision events, as explained in
Section 3.3, the proposed spectrum decision for real-time
application can be classified into an MVSD-SS and an
MVSD-MS.

5.1 Minimum Variance-Based Spectrum
Decision—Single Selection (MVSD-SS)

Real-time applications need to have more reliable and time-
invariant communication channels to satisfy strict service
requirements, such as delay constraints and sustainable
rates. However, how to maximize the total network capacity
is still a crucial problem. To address these issues together, it
is essential to guarantee the service quality of real-time
applications with minimum spectrum resources. Thus, the
spectrum decision problem can be formulated as an
optimization to minimize bandwidth utilization subject to
the constraints on the sustainable rate, data loss rate, and
number of transceivers. However, this problem is mixed
with the discrete optimization for spectrum selection and
the continuous optimization for bandwidth allocation,
which is difficult to solve. Instead, we introduce a three-
stage spectrum decision method as follows:

5.1.1 Step 1: Spectrum Selection

From the view of the date loss rate caused by delay, the
network prefers the spectrum bands with a lower PU
activity. On the other hand, for network capacity, the
channel quality needs to be considered in spectrum decision.
Thus, to maintain service quality and achieve the maximum

network capacity, CR user k selects spectrum bands
according to the following linear integer optimization:

Maximize:
X
i2A

CCR
i ðkÞ
�i

xi; ð3Þ

subject to:
X
i2A

xi ¼ N; ð4Þ

CCR
i ðkÞ �Wi � xi �

RsðkÞ
N

ð8i 2 AÞ; ð5Þ

where N is the number of the transceivers of the CR user,
and Wi is the currently available bandwidth of spectrum i
that is equal or less than the total bandwidth Bi, A is the set
of currently available spectrum bands, and xi 2 f0; 1g
represents the spectrum selection parameter that equals 1
if spectrum i is selected in the binary integer optimization.

This optimization considers both PU activity �i and CR
capacityCCR

i ðkÞ simultaneously as shown in (3). The number
of the selected bands is restricted to the number of
transceivers N as given in (4). The last constraint on
sustainable rate RsðkÞ in (5) ensures that the selected
spectrum bands have enough bandwidth for resource
allocation, which is explained in Step 2 (Section 5.1.2). Since
real-time applications usually require much stricter service
requirements than best-effort applications, they have a higher
priority for resource allocation. Thus, available bandwidth
Wi includes the portions currently occupied by best-effort
applications as well as the unused portion of the spectrum.

5.1.2 Step 2: Resource Allocation

Here, the CR network determines the bandwidth, i.e., a set
of subcarriers, of the selected spectrum bands to meet the
constraints on both sustainable rate RsðkÞ and target data
loss rate P th

loss. To allocate the bandwidth properly, first, we
derive total capacity RTðkÞ and data loss rate PlossðkÞ of
user k. When bandwidth wiðkÞ is allocated to the selected
spectrum i for user k, the expected total capacity can be
obtained as follows:

E½RTðkÞ� ¼
X
i2S

CCR
i ðkÞ � wiðkÞ; ð6Þ

where S is the set of the selected spectrum bands. To satisfy
the service requirement on the sustainable rate, E½RTðkÞ�
should be equal to RsðkÞ.

Unlike total capacity, data loss rate PlossðkÞ, is expressed
in a complicated form, as derived in Appendix A. Thus, it
cannot be directly used for the optimization. However, since
the variance of the total capacity is proportional to the data
loss rate, as shown in Appendix B, we can use the following
variance for resource allocation, instead of the data loss rate.

Var½RTðkÞ� ¼
X
i2S

T off
i �i �

�
T off
i þ � � T off

i �i
�

�
T off
i þ �

�2
� ciðkÞ2 � wiðkÞ2:

ð7Þ

Based on the capacity variance obtained above, the CR
network determines optimal bandwidth wiðkÞ of the
selected bands to minimize the variance of the total capacity
as follows:

Minimize:Var½RTðkÞ�; ð8Þ
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subject to:
XM
i¼1

CCR
i ðkÞ � wiðkÞ ¼ RsðkÞ; ð9Þ

wiðkÞ < Wi ð8i 2 SÞ: ð10Þ

Equations (9) and (10) represent the constraints on the
sustainable rate and the available bandwidth, respectively.
By the Lagrange multiplier method, optimal bandwidth
wiðkÞ can be obtained as follows:

wiðkÞ ¼
RsðkÞ �

�
T off
i þ �

�
ciðkÞ � �i

�
T off
i þ � � T off

i �i
�
�
P

i2S
T off
i

T off
i þ��T off

i �i

: ð11Þ

5.1.3 Step 3: QoS Checkup

This optimization is based on the minimum variance, which
guarantees the minimum data loss rate but may not satisfy
target loss rate P th

loss. If the expected data loss rate PlossðkÞ
given in (29) is still higher than P th

loss after this optimization,
we need to perform one of the following approaches to
satisfy the target loss rate:

. Aggressive approach: By sacrificing the bandwidth
efficiency, the CR network tries to find the proper
spectrum bands to meet the service requirements. To
this end, the selected band having the highest PU
activity needs to be replaced by the one with the
highest CCR

i ðkÞ=�i among the unselected bands that
have a lower PU activity than the original one. If CR
network cannot find the proper spectrum band in
the aggressive approach, it switches to the conser-
vative approach as explained below.

. Conservative approach: Here, real-time applications
are assumed to support multiple sustainable rates
and to adjust their rates adaptively. Thus, in this
approach, instead of increasing the bandwidth, the
CR network reduces the current sustainable rate to a
one-step lower rate through the renegotiation of the
service quality and repeats the MVSD-SS while
maintaining the bandwidth efficiency.

Both aggressive and conservative approaches are applied in
spectrum decision combining with resource management,
which is explained in Section 7.

5.2 Minimum Variance-Based Spectrum
Decision—Multiple Selections (MVSD-MS)

MVSD-MS is performed when CR users lose one of their
spectrum bands due to either PU activity or quality
degradation on that band. Since multiple users need new
spectrum bands at the same time, first, they should
determine the order of the spectrum decision. Let RlostðkÞ
be the lost capacity of user k resulting from spectrum
switching. Then, the loss rate of user k is obtained as
RlostðkÞ=RsðkÞ. In MVSD-MS, CR users are selected in order
from the highest to the lowest loss rate. After that, they
select a single spectrum with the highest CCR

i ðkÞ=�i to meet
the sustainable rate, and accordingly allocate the bandwidth
of all assigned spectrum bands.

6 SPECTRUM DECISION FOR BEST-EFFORT

APPLICATIONS

The objective of typical scheduling methods for best-effort
applications is to maximize the network capacity. The

spectrum decision for best-effort applications has the same
objective, but additionally needs to exploit the PU activity
and long-term channel characteristics. Similar to MVSD in
Section 5, spectrum decision for the best-effort application
can be classified into a maximum capacity-based spectrum
decision—single selection and a multiple selections.

6.1 Maximum Capacity-Based Spectrum
Decision—Single Selection (MCSD-SS)

Optimally, for the maximum capacity, the CR network has
to perform the spectrum decision over all current transmis-
sions at every decision event, which requires a high
computational complexity. Also, the entire resource reallo-
cation leads to the spectrum switching of the multiple users
at the same time, resulting in the abrupt quality degrada-
tion. Instead, we introduce a suboptimal method for best-
effort applications. If current resource allocation is optimal,
the spectrum decision to maximize the network capacity
can be simplified as the following selection problem to
choose spectrum bands so that the decision gain can be
maximized.

Maximize:
X
i2A

�
G
�
i; CCR

i ðkÞ;Wi

�
� L

�
i; CCR

i ðkÞ;Wi

��
xi; ð12Þ

subject to:
X
i2A

xi ¼ N; ð13Þ

where Gði; CCR
i ðkÞ;WiÞ is the expected capacity gain when

new user k with CR capacity CCR
i ðkÞ joins spectrum i with

available bandwidth Wi and Lði; CCR
i ðkÞ;WiÞ is the expected

capacity loss of other users in that spectrum band.A is the set

of currently available spectrum bands andN is the number of

the transceivers of a CR user. xi 2 f0; 1g represents the

spectrum selection parameter. The decision gain can be

defined as the sum of the difference between capacity gain

and capacity loss caused by the addition of a new user.
Assume that a spectrum sharing algorithm assigns the

bandwidth to the users fairly. Then, the capacity of each
user competing for the same spectrum can be approximated
as CCR

i ðkÞ �Wi=nb;i where nb;i represents the number of best-
effort users currently residing in spectrum i. Based on this
capacity, the decision gain can be derived as follows:

G � L ¼ C
CR
i ðkÞ �Wi

nb;i þ 1
�
X
j2Ei

1

nb;i
� 1

nb;i þ 1

� �
� CCR

i ðjÞ �Wi;

ð14Þ

where Ei is the set of the best-effort CR users currently
residing in spectrum band i. The first term represents the
capacity gain of new CR user k and the second term describes
the total capacity loss of other CR users in spectrum i.

6.2 Maximum Capacity-Based Spectrum
Decision—Multiple Selections (MCSD-MS)

Similar to the MVSD-MS, MCSD-MS enables multiple CR
users to select a single spectrum band. Thus, the CR network
first determines the order of the spectrum decision, and then
chooses a spectrum band for each CR user as follows:

. Each CR user who loses its spectrum band, finds a
candidate spectrum band with the highest decision
gain.
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. A CR user with the highest decision gain is assigned
to the spectrum first through the optimization in (12).

. According to the optimization result, the CR net-
work updates the current bandwidth allocation and
repeats the MCSD-MS for the remaining CR users
who need to be assigned to a new spectrum band.

7 DYNAMIC RESOURCE MANAGEMENT FOR

SPECTRUM DECISION

Because of the PU activities, available spectrum bands show
time-varying characteristics in the CR network. Thus, with
the only proposed decision schemes, the CR network is not
able to exploit spectrum resources efficiently, and hence
results in the violation of the guaranteed service quality. As
a result, the CR network necessitates an additional resource
management scheme to coordinate the proposed spectrum
decision methods adaptively with bandwidth fluctuations.
The main objectives of the proposed resource management
are as follows:

. The CR network is capable of determining the
acceptance of a new incoming CR user without
any effect on the service quality of currently
transmitting users.

. During the transmission, the CR network needs to
maintain the service quality of currently transmit-
ting users by considering the fluctuation of the
available bandwidth.

. Since real-time users usually have a higher priority
in spectrum access, best-effort users may not have
enough resources. Thus, the CR network may be
required to balance the bandwidth between both
applications.

In the following sections, we define the network states to
describe the current spectrum utilization. Based on these
states, we present an admission control scheme, and then
propose decision control methods for two different events:
CR user and primary user appearances.

7.1 Spectrum States for Resource Management

To exploit spectrum resources efficiently, the proposed
spectrum decision needs to adapt to the time-varying
network conditions. Thus, we classify the network condi-
tion into three states according to the bandwidth utilization.
Let WR be the bandwidth currently assigned to real-time
users, and Wav be the total available bandwidth not
occupied by primary users. Wmin represents the minimum
bandwidth to guarantee the service requirements of current
users. WR, Wav, and Wmin are time-varying according to the
spectrum decision results and PU activities. Since best-effort
users do not have strict service requirements, we consider
only the bandwidth assigned to real-time users in determin-
ing the network state. As shown in Fig. 5, the network states
are classified as follows:

. Underloaded state: If the current occupancy of real-
time users, WR=Wav is less than �, the CR network is
underloaded. � is the predefined overload threshold
to determine if the network is overloaded or not.

. Overloaded state: When WR=Wav > �, the CR network
is now overloaded. According to the amount of the

remaining bandwidth, this state can be classified
into two substates. If the expected bandwidth
required for the spectrum decision, Wreq, is less than
the currently unused bandwidth Wav �WR, the CR
network is in the beginning of the overloaded state
and still has enough resources (operating state).
Otherwise, the CR network is almost saturated and
does not have enough bandwidth for the current
spectrum decision operation (saturated state). Wreq is
given in Section 7.3.2.

. Outage state: If available bandwidth Wav is below
Wmin, the CR network cannot provide the guaranteed
service quality to the currently active CR users.

If � becomes higher, real-time users can have more stable

sustainable rate due to less admission and rate controls, but

the outage probability will be higher.

7.2 Admission Control

The CR network is responsible for guaranteeing the service

requirements of current CR users regardless of bandwidth

fluctuations. Thus, if the CR network cannot maintain the

service requirements, it should reject a new incoming CR

user, referred to as an admission control. The proposed

admission control method requires the following procedures:

. User characterization: According to the radio condition,
each CR user requires different bandwidth to achieve
the same service requirements. The radio condition of
each user k can be represented as its normalized
capacity over all spectrum bands CðkÞ as follows:

CðkÞ ¼
PM

i¼1 C
CR
i ðkÞ �BiPM
i¼1 Bi

; ð15Þ

where M is the number of all spectrum bands and Bi

is the total bandwidth of spectrum i.
. Bandwidth for guaranteeing the service quality: Since

available bandwidth Wav varies over time, the CR
network cannot always satisfy the service require-
ments. Thus, we introduce a lower limit of band-
width Wmin to guarantee the service requirements of
current CR users. Assume that regardless of the
bandwidth fluctuation, the CR network should
guarantee an average sustainable rate, RminðkÞ, over
an entire session of real-time user k. Then, the
minimum bandwidth of user k to support RminðkÞ is
expressed as RminðkÞ=CðkÞ. When a new CR user
appears, Wmin can be expressed as the sum of the
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minimum bandwidths for all CR users including
both current and incoming users.

. Admission criterion: The proposed spectrum decision
is designed for the states when Wav is above Wmin.
Otherwise, the network is in the outage state, and
hence cannot maintain service requirements of
current CR users. However, Wmin is time-varying
according to the current users and spectrum avail-
ability. To mitigate this temporal resource fluctua-
tion, we first determine stable interval Tmin, which is
defined as the average period where no CR user
appears, and accordingly Wmin does not change.
Assume that the departure rate of CR users is �.
Then, Tmin can be obtained as 1=ð� � nrÞ on average,
where nr is the number of current real-time users. To
avoid resource outage of current CR users, the
proposed scheme accepts a new incoming user only
if a resource outage probability during this interval is
greater than the predetermined acceptable outage
probability �. Otherwise, it is rejected. The resource
outage probability, Pout, is the probability that
Wav < Wmin, which is derived in Appendix C.

The performance of the admission control method
depends on acceptable outage probability �. If the CR
network has a higher �, it can accept more users, resulting
in higher quality degradation since it is highly probable that
Wav < Wmin.

The proposed MVSD method explained in Section 5 tries
to satisfy target data loss rate P th

loss on the assumption that the
network has sufficient available bandwidth. Thus, the
spectrum decision also needs to consider the additional data
loss factor resulting from the bandwidth shortage. Since the
network capacity is proportional to the available bandwidth,
the data loss rate newly introduced by the admission control
can be approximately estimated as follows:

bPloss ¼
Wmin � E½WavjWav < Wmin�

Wmin
� Pout: ð16Þ

Here, the first term represents the ratio of the amount of
bandwidth shortage to the bandwidth limit Wmin.

Then, the actual data loss rate should be expressed as the
sum of P th

loss and bPloss. Assume that real-time users have

maximum allowable data loss ratePloss. To satisfy this service
requirement, target rate P th

loss should be decided as follows:

P th
loss ¼ Ploss � bPloss: ð17Þ

The proposed admission control method is originally
designed only for real-time users. Since the best-effort users
do not have strict service requirements, they do not need
the admission control scheme.

7.3 Decision Control

Here, we propose decision control schemes for both CR and
primary user appearances, which enable spectrum decision
to adapt to the different network states.

7.3.1 Decision Control in CR User Appearance

One of the important roles in the decision control is how to
allocate spectrum resources with the minimum influence on
current CR users when a new CR user appears. Fig. 6a shows
the procedures of the proposed decision control when the
new CR user appears. According to the state, the proposed
control scheme coordinates the spectrum decision as follows:

Underloaded state. Since the available bandwidth is
sufficient in the underloaded state, the CR network per-
forms the spectrum decision aggressively, i.e., the aggres-
sive MVSD-SS for real-time users and the MCSD-SS for
best-effort users.

Overloaded state. Since the available bandwidth be-
comes scarce in this state, the spectrum decision needs to be
more spectrum-efficient. Thus, the CR network performs
the conservative MVSD-SS for the real-time user.

However, since real-time users occupy much higher
bandwidth through this operation, best-effort users may
experience bandwidth starvation in the overloaded state. If
the CR network is required to balance the bandwidth
between real-time and best-effort users, it needs to check
the current bandwidth utilization of both applications
before MCSD-SS. Let 	 be a balance coefficient predeter-
mined by the CR network. If the average bandwidth of
current real-time users, WR=nr is greater than the weighted
average bandwidth for best-effort users, 	 � ðWav �WRÞ=nb,
current resource allocation is considered to be unbalanced
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where nr and nb are the numbers of the current real-time
and the current best-effort users, respectively. If 	 is greater
than 1, real-time users can occupy more bandwidth, and
hence guarantee more stable service quality.

To solve the resource starvation problem in best-effort
users, we propose a selective rate control that maintains
resource balance in the overloaded state by reducing the
sustainable rate of the selected real-time users. When each
real-time user k reduces its sustainable rate to a one-step
lower rate, the expected bandwidth gain is expressed as
�RðkÞ=CðkÞ where �RðkÞ and CðkÞ is the rate decrement
and the normalized capacity of a real-time user k,
respectively. Based on the bandwidth gain, the CR network
selects real-time users for the selective rate control to
minimize total rate reduction subject to the balance
constraint, which can be expressed as the following linear
integer optimization problem:

Minimize:
X
k2R

�RðkÞ � xk; ð18Þ

subject to:
WR ��W

nr
� 	 �Wav �WR þ�W

nb
� 0; ð19Þ

�W �
X
k2R

�RðkÞ
CðkÞ � xk; xk 2 f0; 1g; ð20Þ

where R is the set of real-time users currently active and
�W is the bandwidth required for the balance.

The real-time users selected through the above optimiza-
tion reduce their sustainable rates to the one-step lower
rates and then perform the resource allocation explained in
Section 5.1. Whenever the best-effort user appears in this
state, the network tries to satisfy the balanced condition.
However, to avoid the abrupt quality degradation of real-
time users, a selective rate control can change the sustain-
able rate of real-time users to only a one-step lower rate.

Outage state. The service requirements of CR users
cannot be guaranteed because of resource shortage. Thus,
all incoming best-effort users should be rejected in this
state to avoid the overall quality degradation. New real-
time users in this state are already rejected through the
admission control.

7.3.2 Decision Control in Primary User Appearance

Once the CR network accepts the users, it should guarantee
their service requirements during the transmission regard-
less of the bandwidth variation. Fig. 6b shows the decision
control procedure in the primary user appearance. Accord-
ing to the network states, the proposed scheme can be
performed as follows:

Underloaded state. Similar to the CR user appearance, the
CR network performs the spectrum decision aggressively.
For a real-time user, the aggressive MVSD-MS is used
whereas the MCSD-MS is executed for a best-effort user.

Operating state. In the overloaded state, the decision
control starts to coordinate the bandwidth allocation to
maintain the service quality. In the primary user appear-
ance, the overloaded state can be divided into two different
substates according to the remaining spectrum resources. In
the operating state, the CR network is considered to be
overloaded but still has enough resources for spectrum
decision, i.e., available bandwidth Wav is greater than

bandwidth required for spectrum decision, Wreq. The
expected bandwidth for MVSD-MS, Wreq can be derived
as follows:

Wreq ¼
X
k2Rl

RlostðkÞP
i2A C

CR
i ðkÞ �Wi

� ðWav �WRÞ; ð21Þ

where Wi is the available bandwidth of spectrum i currently
unused by both primary and real-time CR users and RlostðkÞ
is the lost capacity of user k due to the PU activities. A is the
set of the currently available spectrum bands and Rl is the
set of the real-time users who lose their spectrum bands,
respectively. Here, Wreq is expressed as the sum of the
expected bandwidth of user k 2 Rl required to support
RlostðkÞ. The denominator in the summation in (21)
represents the total expected capacity of user k over all
currently available spectrum bands.

If the bandwidth of both applications is balanced, the CR
network performs a conservative MVSD-MS and an MCSD-
MS. Otherwise, it needs a selective rate control before the
spectrum decision similar to the case in CR user appearance.
The only difference is that a selective rate control is just
applied to the real-time users losing one of their spectrum
bands to minimize the influence on other real-time users.

Saturated state. The other overloaded state in primary
user appearance is the saturated state where the remaining
available bandwidth is less than the bandwidth required for
the spectrum decision. In this case, real-time CR users
cannot find new spectrum bands to maintain their current
service requirements, which necessitates the renegotiation
of their service requirements.

Let all possible sustainable rates for user k be fRs;1ðkÞ;
Rs;2ðkÞ; . . . ; Rs;nkðkÞg, where nk is the number of all possible
sustainable rates. Then, the expected bandwidth of each
sustainable rate can be obtained as Rs;iðkÞ=CðkÞ where CðkÞ
is the normalized capacity of user k given in (15). Based on
the expected bandwidth gains in renegotiation, we propose
a full rate control where the sustainable rates of real-time
users currently requesting spectrum decision are optimized
to satisfy both bandwidth and balance constraints. This
optimization problem is expressed as the following linear
integer optimization, the so-called lockbox problem [8].

Maximize:
X
k2Rl

RsðkÞ

¼
X
k2Rl

Xnk
i¼1

Rs;nkðkÞ � xiðkÞ; ð22Þ

subject to:
Ws

R þ bWR

nr
� 	 �Wav �Ws

R � bWR

nb
< 0; ð23Þ

bWR < Wav �Ws
R; ð24Þ

bWR ¼
X
k2Rl

Xnk
i¼1

Rs;iðkÞ
CðkÞ � xiðkÞ; ð25Þ

Xnk
i¼1

xiðkÞ ¼ 1 xiðkÞ 2 f0; 1g; ð26Þ

where Rl and bWR are the set of the real-time users who lose
their spectrum bands and their expected bandwidth. Ws

R is
the bandwidth of the real-time users not affected by the PU
activities. Equation (23) is the constraint on the resource
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balance explained in Section 7.3.1. Equation (24) is the
constraint on the available bandwidth required for the
spectrum decision.

Outage state. This state cannot provide a guaranteed
service quality any longer. Thus, even though the CR network
needs the spectrum decision, all CR users who lose their
connections reduce their sustainable rate to the minimum
and just wait until the network condition becomes better.

8 PERFORMANCE EVALUATION

8.1 Simulation Setup

Here, we simulate an infrastructure-based CR network
consisting of one base-station and multiple CR users. Each
user is uniformly distributed over the network coverage
with the radius of 2 km. The CR network is assumed to
operate in 20 licensed spectrum bands consisting of four
VHF/UHF TV, four AMPS, four GSM, four CDMA, and
four WCDMA bands. The bandwidth of these bands are
6 MHz (TV), 30 kHz (AMPS), 200 kHz (GSM), 1.25 MHz
(CDMA), and 5 MHz (WCDMA), respectively. The PU
activities of each spectrum band i, �i and �i, are randomly
selected over ½0; 1�. The service rate of CR traffic � is 0.02,
and its arrival rate can be determined according to the
average number of users. In the simulations, we assume a
lognormal fading channel model, where the noise power is
�115 dBm, the shadowing deviation is 4, and the path loss
coefficient is set to 4 [19]. Transmission power Pk

i ðfÞ is unity
over all frequencies.

Through spectrum sensing, the base-station is already
aware of the spectrum availability in its coverage. Sensing
efficiency �i, and false alarm probability P f

i are set to 0.9 and
0.99, respectively. These sensing capabilities are assumed to
be identical over all spectrum bands. User-based and the
band-based quality degradations, explained in Section 3.3,
use the same strategies as primary user and CR user
appearances, respectively. Thus, we do not consider them
in the simulations.

The real-time application is assumed to support five
different bitrates: 64, 128, 256, 512 kbps, and 1.2 Mbps. For
the resource management, Wmin and Rmin are set to 10 MHz
and 512 Kbps, respectively. The overloaded threshold � is
set to 0.5, the balance coefficient 	 is 1. The acceptable data
loss rate, Ploss, and the acceptable outage threshold � are set
to 0.05 and 0.03, respectively.

To evaluate the performance of our spectrum decision
framework, we introduce three different cases as follows:

. Case 1: CR users exploit all functionalities of the
entire spectrum decision framework including
MVSD, MCSD, and all resource management func-
tions explained in Sections 5, 6, and 7, respectively.

. Case 2: CR users perform the proposed spectrum
decision framework without the admission control
scheme.

. Case 3: CR users use only MVSD and MCSD
methods (Case 1 without both admission and
decision controls).

. Case 4: Instead of the optimization schemes in
Section 5.1, the proposed MVSD scheme adopts an
exhaustive search to determine proper spectrum

bands and their bandwidth, which is optimal for
real-time users.

Since there are no previous work related to spectrum
decision, we compare our decision framework with two
straightforward decision criteria as follows:

. Case 5 Capacity-based decision: CR users select the
spectrum with the highest channel capacity as follows:

Maximize:
X
i2A

CCR
i ðkÞ � xi

subject to:
X
i2A

xi � N xi 2 f0; 1gX
i2A

CCR
i ðkÞ �Wi � xi � RsðkÞ:

ð27Þ

A is the set of the currently available spectrum
bands. The last constraint is applied only to the real-
time users.

. Case 6 PU activity-based decision: CR users select the
spectrum bands with the lowest PU activity. Instead
of the objective function in Case 5, Case 6 usesP

i2A 1=�i � xi.
In the following sections, we show the simulation results

in three different scenarios (only real-time users, only best-
effort users, and both of them).

8.2 Real-Time Applications

First, we consider the scenario with only real-time users to
validate the proposed MVSD-SS and MVSD-MS described
in Section 5. Since this scenario does not require the
decision control for bandwidth balance, Case 3 is not
considered in this simulation. The numbers on the graph
indicate the standard deviations of each simulation, which
show the distribution of the data loss rate over all CR users.

Fig. 7a shows how the average number of users
influences the data loss rate. Here, we assume three
spectrum bands and 0.1 sec for the switching delay. For
this simulation, we generate CR user traffic from 10 to 80 on
average. When a small number of users are transmitting,
each case shows relatively low data loss rate. However, as
the number of users increases, other methods (Cases 2, 5,
and 6) increase the data loss rate. On the contrary, Case 1
still maintains a certain level of the data loss rate where the
admission control controls the addition of new users
adaptively dependent on current network utilization.
However, Case 1 shows little higher data loss rate than
the acceptable data loss rate. The reason is that during the
transmission the MVSD-MS scheme maintains all ongoing
transmissions even though they cannot find the spectrum
bands to satisfy the acceptable data loss rate, which causes
slight increase in the data loss rate. Even though the
proposed method does not use admission control (Case 2),
it still shows a better data loss rate than Cases 5 and 6.

In Fig. 7b, we investigate the performance of the
spectrum decision under four PU activity scenarios—low/
low, low/high, high/low, and high/high. Low PU activity
(either �i or �i) is uniformly distributed between 0 and 0.5,
and high PU activity is between 0.5 and 1. The average
number of users, the number of spectrum bands, and
switching delay are set to 50, 3, and 0.1 sec, respectively. In
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all cases, Case 1 shows better performance in data loss than
other method (Cases 2, 3, 5, and 6), and a similar loss rate to
Case 4. Also, is is shown that �i is a more dominant factor to
determine the loss rate than �i since a higher �i introduces
more frequent switching, leading to a significant perfor-
mance degradation.

We also show the relationship between the data loss
rate and the switching delay in Fig. 7c. Here, we assume
50 users and three spectrum bands. The proposed method
(Case 1) shows the lower loss rate than other methods by
both rejecting users before the transmission and reducing
sustainable rate during the transmission. Case 2 still shows
better performance than Cases 5 and 6 because of both
MVSD-SS and MVSD-MS. In all cases, a longer switching
delay results in a higher data loss rate.

As explained in Section 3.1, the transmission with
multiple transceivers can mitigate the effect of capacity
fluctuations as well as prevent a temporary disconnection of
communication channels. This phenomena are observed in
Fig. 7d. Here, we assume 0.1 sec for the switching delay and
50 real-time users. An interesting point is that more
spectrum bands do not always lead to good performance
in the data loss rate. As the number of spectrum bands
increases, the total amount of PU activities over multiple
spectrum bands increases, which may cause an adverse
effect on the data loss rate. In this simulation, each does not
improve its data loss rate significantly when it has more
than two spectrum bands.

Consequently, in all simulations, the proposed method
(Case 1) shows almost the same performance as the optimal
method (Case 4), but requires less computational complex-
ity as explained in Section 5.1

8.3 Best-Effort Applications

To evaluate the performance of MCSD-MS and MCSD-SS
described in Section 6, we compare the proposed method
(Case 1) with Cases 5 and 6. Since the admission and
decision control functionalities are not needed in this
scenario, we do not consider Cases 2, 3, and 4 here. In this
simulation, we also show how the number of users, PU
activity, switching delay, and number of spectrum bands
influence the total network capacity. As shown in Fig. 8,
Case 1 shows higher capacity compared to the capacity-
based and PU-activity-based methods. Fig. 8a indicates the
relationship between the number of users and total network
capacity where Case 1 shows a better performance over
Cases 5 and 6 by exploiting the PU activity and the channel
condition at the same time. In Fig. 8b, we investigate how
PU activities influence the performance of the total capacity.
Similarly, Case 1 shows better performance than other
cases. Especially, when �i is lower, Case 1 shows more
improvement due to less frequent switching delay. Fig. 8c
shows the simulation results on the total network capacity
when 50 best-effort users with three spectrum bands are
assumed. Here, we observe that increase in switching delay
causes an adverse influence on network capacity. Fig. 8d
investigates the simulation results on the total network
capacity when 50 best-effort users with 0.1 sec switching
delay are applied. Similar to the simulation on real-time
users, Case 1 shows the best performance in two spectrum
bands, but less total capacity in more than two spectrum
bands, since it causes a more frequent spectrum switching
as well as prevents exploiting channel diversity.

8.4 Hybrid Scenario

Here, we consider a hybrid scenario where both real-time
and best-effort users coexist. Similarly, we assume three
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spectrum bands and 0.1 sec switching delay for this
simulation. Here, we set the total number of active users to
100 and vary the number of best-effort and real-time users to
investigate the performance according to the network state.
In Fig. 9a, we show the data loss rate of real-time users on a
hybrid scenario. In the underloaded state, i.e., when there
less real-time users in the network, we can see each method
shows lower data loss rate. On the other hand, overloaded
conditions lead to considerably different performance
according to the decision methods. Through admission and
decision controls, Case 1 admits real-time users only when
the network can guarantee the service requirement of
current users, and hence maintains the lowest data loss rate.
When the proposed method does not use the admission and
decision controls (Cases 2 and 3), the CR network accepts
much more real-time users than it can provide with the
guaranteed service quality, leading to the increase in the data
loss rate and the decrease in the average capacity of the real-
time user as described in Fig. 9b. On the contrary, Cases 5
and 6 show the worst data loss rates.

In Fig. 9b, we show the average user capacity of real-time
and best-effort users in the hybrid scenario. When real-time
users are less than best-effort users, Cases 5 and 6 show the
highest user capacity in real-time users while maintaining
slightly higher data loss rate as that of the proposed
methods (Cases 1, 2, and 3). On the contrary, as the number
of real-time users increases, Cases 5 and 6 show lower
capacity in best-effort users due to the lack of resource
management, but the proposed method (Case 1) still
provides enough capacity to best-effort users. Even though
real-time users occupy most of the bandwidth resources in
Cases 5 and 6, they cannot satisfy the service requirements
and show the highest data loss rate as observed in Fig. 9a.

By exploiting the admission control scheme, Cases 1 and
2 show better fairness in capacity between both application
types while maintaining the low data loss rate in real-time
users. Though Case 3 does not use both admission and
decision control schemes, it shows slightly higher capacity
in best-effort users than Cases 5 and 6 since the MVSD
scheme provides bandwidth-efficient resource allocations,
leading to increase in available bandwidth for best-effort
users as explained in Section 5. Similarly, the optimal
method (Case 4) selects the bandwidth-efficient spectrum
for real-time users, leading to slightly higher capacity in
best-effort users than the proposed method (Case 1), while

it achieves almost same data loss rate and user capacity in
real-time users as the proposed method.

Fig. 10 shows how the proposed admission control
exploits bandwidth resources when 50 real-time users and
50 best-effort users are transmitting simultaneously. From
the simulation results, we can see the proposed admission
control (Case 1) balances the bandwidth between both
applications over the entire simulation time. On the
contrary, in Cases 5 and 6, real-time applications occupy
most of the available bandwidth to satisfy their service
requirements, leading to the bandwidth starvation of best-
effort users.

9 CONCLUSION

In this paper, we introduced a framework for spectrum
decision to determine a set of spectrum bands by consider-
ing the channel dynamics in the CR network as well as
application requirements. To this end, first, a novel
spectrum capacity model is proposed that considers unique
features in CR networks. Based on this capacity model, an
MVSD is developed for real-time applications, which
determines the spectrum bands to minimize the capacity
variance. For the best-effort applications, an MCSD is
proposed where spectrum bands are decided to maximize
the total capacity. Moreover, a dynamic resource manage-
ment scheme is introduced to enable the CR network to
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coordinate spectrum decision adaptively dependent on the

time-varying spectrum resources. Simulation results show

that the proposed spectrum decision framework provides

efficient bandwidth utilization while guaranteeing the

service quality.

APPENDIX A

DERIVATION OF THE DATA LOSS RATE IN COGNITIVE

RADIO NETWORKS

In the CR network, each spectrum band has two discrete

capacity states, 0 and ciðkÞ � wiðkÞ according to its PU activity,

as explained in Section 4. Here, ciðkÞ and wiðkÞ are the

normalized capacity and the bandwidth of spectrum i for

user k, respectively. Thus, when N spectrum bands are

assigned to a CR user k, the total capacity RTðkÞ has 2N states

according to the PU activities of the selected spectrum bands.

Thus, each state m has the following state probability:

PmðkÞ ¼
Y
i2Im

T off
i

T off
i þ �

� �i
Y
i2Bm

1� T off
i

T off
i þ �

� �i
� �

; ð28Þ

where Im and Bm are the sets of idle spectrum bands and

busy spectrum bands at state m, respectively.
Let the sustainable rate of user k be RsðkÞ and the

capacity of each state m be bRmðkÞ. From the assumption that

the data loss occurs when channel capacity is below RsðkÞ,
the data loss rate can be defined as the ratio of the expected

capacity loss to the sustainable rate RsðkÞ as follows:

PlossðkÞ ¼
RsðkÞ �

P2N

m¼1 minðRsðkÞ; bRmðkÞÞPmðkÞ
RsðkÞ

¼
P2N

m¼1 jRsðkÞ � bRmðkÞjPmðkÞ
2RsðkÞ

:

ð29Þ

APPENDIX B

DERIVATION OF THE CAPACITY VARIATION IN

COGNITIVE RADIO NETWORKS

From the capacity state probability, derived in (28), the

variance of the total capacity RTðkÞ can be derived as follows:

Var½RTðkÞ� ¼
X2N
m¼1

ð bRmðkÞ �RsðkÞÞ2 � PmðkÞ: ð30Þ

By comparing (29) with (30), we can see that the variance

of the total capacity Var½RTðkÞ� is proportional to the data

loss rate PlossðkÞ. As a result, we can use the capacity

variance for resource allocation, instead of the data loss rate.

To apply the variance in (30) for the optimization, we need

another form of the variance expressed in terms of the

bandwidth wiðkÞ and the normalized capacity ciðkÞ of each

spectrum. Since the spectrum is independent with each

other, the variance of the total capacity in the selected

spectrum bands can be expressed as follows:

Var½RTðkÞ� ¼ Var

�X
i2S

CiðkÞ � wiðkÞ
�

¼
X
i2S

Var½CiðkÞ � wiðkÞ�

¼
X
i2S
ðE½ðCiðkÞ � wiðkÞÞ2� � E½CiðkÞ � wiðkÞ�2Þ

¼
X
i2S

��
ciðkÞ2 � wiðkÞ2 �

T off
i

T off
i þ �

� �i

�
�
ciðkÞ � wiðkÞ �

T off
i

T off
i þ �

� �i
�2�

¼
X
i2S

T off
i �iðT off

i þ � � T off
i �iÞ

ðT off
i þ �Þ

2
ciðkÞ2wiðkÞ2;

ð31Þ

where CiðkÞ is the random variable to represent the capacity
of spectrum i for user k. S is the set of the selected bands.

APPENDIX C

DERIVATION OF THE RESOURCE OUTAGE

PROBABILITY

To model PU activities in the spectrum, we can use a two-
state Markov chain with the transition probabilities from
idle to idle x00

i ¼ 1� e��i�t, from idle to busy x01
i ¼ e��i�t,

from busy to idle x10
i ¼ e��i�t, and from busy to busy

x11
i ¼ 1� e��i�t, where �t is a sensing period. Then, the idle

probability of spectrum i after r�t, P idle
i ðrÞ, can be

expressed as either one of the following probabilities [14]:

P i2i
i ðrÞ ¼

x10
i

x01
i þ x10

i

þ
�
1� x01

i � x10
i

�r � x01

x01 þ x10
i

;

P i2b
i ðrÞ ¼

x10
i

x01
i þ x10

i

�
�
1� x01

i � x10
i

�r � x10

x01 þ x10
i

;

ð32Þ

where P i2i
i ðrÞ and P i2b

i ðrÞ are the expected idle probabilities
after r�t when current spectrum states are idle and busy,
respectively. If a false alarm probability P f

i is considered,
the idle probability of spectrum i can be expressed as either
ð1� P f

i ÞP i2i
i ðrÞ or ð1� P f

i ÞP i2b
i ðrÞ.

Based on these probabilities, we derive the expected
resource outage probability as follows: Since the network has
M spectrum bands, it has 2M states according to the status of
each band. Let L be a set of states that experience resource
outage, i.e., that W av < Wmin. In represents a set of idle
spectrum bands at state n. Then, resource outage happens
when all spectrum bands in In; n 2 L are idle and the rest of
bands i 62 In; n 2 L are busy. From this, the resource outage
probability after r�t, PoutðrÞ can be derived as follows:

PoutðrÞ ¼
X
n2L

Y
i2In

P idle
i ðrÞ

Y
i62In

�
1� P idle

i ðrÞ
�
: ð33Þ

Based on this probability, we can obtain the expected resource
outage probability during r�t, Pout as

Pr
r
0 ¼1 Poutðr0Þ=r.
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