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Abstract—This paper investigates the optimal sensor density
in Wireless Underground Sensor Networks (WUSNs) to guaran-
tee high monitoring accuracy with minimum deployment cost.
In WUSNs, the density of underground sensors is expected
to be as low as possible due to the high deployment cost.
However, an extremely high density of underground sensors
is required to maintain the full connectivity of WUSNs due
to the harsh underground channel conditions. This conflict
constitutes the greatest challenge to deploy the WUSNs and
was not addressed before, to our knowledge. In this paper,
a spatio-temporal correlation-based data collection scheme is
proposed to release the unfeasible sensor density requirement
of the full connectivity in WUSNs. More importantly, an explicit
solution for sensor density optimization in WUSNs under the
proposed data collection scheme is developed such that the effects
of the dynamic underground channel conditions, the spatio-
temporal correlations, the network connectivity, and the random
or controlled mobility of mobile sinks are captured. The results
of this paper provide principles and guidelines for the design and
deployment of wireless underground sensor networks.

I. I

Wireless Underground Sensor Networks (WUSNs) consist
of wireless sensors buried underground, which enable a wide
variety of novel applications, such as intelligent irrigation,
border patrol, and underground infrastructure monitoring [1].

Despite the potential advantages, the greatest barrier in
designing WUSNs is the conflict between the high deploy-
ment cost of underground sensors and the high underground
sensor density required to achieve fully connected network.
On the one hand, since the deployment and maintenance
costs of underground sensors are extremely high compared
with terrestrial sensor networks, the sensor density in WUSNs
should be minimized. On the other hand, due to the material
absorption in soil medium, the communication range between
underground sensors is very limited (≤ 5 m) [2]. Consequently,
a prohibitively high density of underground sensors is required
to guarantee the network connectivity [3], [4].

To address this conflict, one feasible solution is to let the
above ground vehicles, people, or some dedicated robots inside
the field carry transceiver devices and serve as mobile sinks.
The mobile sink either moves randomly (e.g. vehicles and
people) or moves under control (e.g. robots). By utilizing
the mobile sinks, the WUSNs are not necessary to be fully
connected. Due to the reduced connectivity, the WUSNs are
divided into multiple unconnected clusters. When a mobile
sink moves into the communication range of any underground
sensors in one cluster, it can collect the measured data from all
the underground sensors in this cluster. By this data collection
scheme, the sensor density in WUSNs can be reduced.
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However, under this data collection scheme, the mobile
sinks cannot collect the data of every sensor at every time
stamp due to the not fully connected network. The data at
uncollected positions and time stamps needs to be estimated
by utilizing the spatio-temporal correlations between the mon-
itored data [6]. Since the wireless underground sensor nodes
act not only as sensors but also as data transceivers and
relays, the sensor density determines both the spatial and
temporal sampling rate. There exists an optimal density of the
underground sensors that can achieve satisfying monitoring
accuracy with minimum deployment cost.

Finding this optimal sensor density is a complicated due to
the unique channel characteristics and the heterogeneous net-
work architecture in WUSNs, which requires a jointly analysis
of the three types of communication channels in WUSNs, the
spatio-temporal correlations, the network connectivity, and the
sink mobility. To the best of our knowledge, this problem has
not been addressed by the research community so far.

In this paper, we theoretically investigate the optimal sensor
density in WUSNs that can guarantee high monitoring accu-
racy with minimum sensor deployment cost. Specifically, we
introduce a spatio-temporal correlation-based data collection
scheme for WUSNs to release the unfeasible sensor density
requirement in WUSNs. Then, we present an explicit solution
for sensor density optimization in WUSNs under the proposed
data collection scheme. To formalize the optimization solution,
the upper bound of the monitoring error is calculated as the
objective function, which is explicitly expressed as a function
of dynamic underground channel model, spatio-temporal cor-
relations, network connectivity, and mobility of mobile sinks.
The results of this paper provide principles and guidelines for
the design and deployment of WUSNs.

The remainder of this paper is organized as follows. In
Section II, the underground channel model is described. In
Section III, the spatio-temporal correlation-based data collec-
tion scheme is proposed. Next, in Section IV, the optimal
sensor density in WUSNs under the proposed data collection
scheme is derived. Then, in Section V, numerical studies are
performed. Finally, the paper is concluded in Section VI.

II. U C C

In this section, we calculate the communication ranges of
the three types of channels in WUSNs.

A. Path Loss of UG-UG Channel
The path loss of Underground-to-Underground (UG-UG)

channel consists of two parts: the UG path loss LUG and the
additional path loss Vre f lect caused by the reflected second path
from the air-ground interface, i.e.

LUG−UG = LUG (dUG ) + Vre f lect (ddepth ) , (1)



where the UG path loss LUG is a function of UG path length
dUG , operating frequency, soil water content, soil bulk density,
and composition of soil in terms of sand and clay fractions; the
additional path loss Vre f lect is a function of all the parameters of
LUG plus the burial depth ddepth of UG sensors. The expressions
of LUG (dUG ) and Vre f lect (ddepth ) can be found in [2].
B. Path Loss of UG-AG Channel and AG-UG Channel

The path loss of Underground-to-Aboveground (UG-AG)
channel LUG−AG consists of: the UG path loss LUG , the AG path
loss LAG , and the refraction loss from soil to air LR

UG−AG
, i.e.

LUG−AG = LUG (dUG ) + LAG (dAG ) + LR
UG−AG

, (2)

where dUG is the length of the UG path; dAG is the length of
the AG path. Similar to the UG-AG channel, the path loss of
the Aboveground-to-Underground (AG-UG) channel is

LAG−UG = LUG (dUG ) + LAG (dAG ) + LR
AG−UG

, (3)

where LR
AG−UG

is the refraction loss from air to soil. The
AG path loss LAG can be calculated using Friis transmission
equation. The detailed expression of the refraction loss LR

UG−AG

and LR
AG−UG

can be found in [3], [4], which are functions of the
soil dielectric properties, the burial depth of UG sensor, the
distance between the transceivers, and the antenna height of
the AG sink.
C. Transmission Ranges of the Three Types of Channels

If the transmit power is Pt and the antenna gains are gr and
gt, then the received power Pr(d) at a sensor d meters away is
Pr(d) = Pt+gr+gt−Lpath (d), where Lpath (d) is the corresponding
path loss given by (1), (2), or (3). Then the corresponding
communication range of the channel can be calculated as

R = max{d : Pr(d)/Pn > SNRth} , (4)

where Pn is the noise power; and SNRth is the minimum signal-
to-noise ratio required by the receiver.

We denote the communication range of the UG-UG, UG-
AG, and AG-UG channel as RUG−UG, RUG−AG, and RAG−UG,
respectively. According to the above models, RUG−UG is the
smallest (≤ 5 m). RUG−AG and RAG−UG are in the range of
10 m to 50 m. RUG−AG is larger than RAG−UG, since a large
portion of signal energy can penetrate the air-ground interface
from soil to air while most energy is reflected back in the
opposite direction. However, this difference becomes smaller
when the sensor burial depth decreases [5]. The ranges of
all the three types of channels decrease dramatically as the
soil water content increase. The sensor burial depth has
significant influence on RUG−AG and RAG−UG. However, in most
applications, the burial depth has little influence on RUG−UG.

III. S-T C-B D C
In this section, we proposed a spatio-temporal correlation-

based data collection scheme in WUSNs. By utilizing the
spatio-temporal correlations and the AG mobile sinks, the
WUSNs are not necessary to be fully connected so that the UG
sensor density can be reduced. When a mobile sink moves into
the transmission range of one UG sensor, the communication
is initiated by the data request from the mobile sink. This
request is then broadcasted by this connected UG sensor to
all other UG sensors in the same cluster. Finally, all the UG
sensors in this cluster report their measurement data to the
mobile sink in a multi-hop fashion. Due to the reduced network
connectivity and the usage of mobile sinks, not every UG

sensor’s data is available at the monitoring center at every
time stamp. The time stamp when a certain data is available
depends on the network connectivity and the sink mobility.
Moreover, not every position in the field has a UG sensor
due to the limited sensor density. Since all the monitored data
are spatio-temporally correlated, the unavailable data at any
interested locations and time stamps can be estimated by the
least-squares linear regression (kriging) algorithms [6].

IV. S D O WUSN
In this section, we derive the analytical solution for sensor

density optimization in WUSNs.

A. Network Model
The WUSN is deployed in an arbitrary convex 2D region
R2. The UG sensors {Ni} are distributed inside R2 according
to a homogeneous Poisson process of intensity λ. The sensor
burial depths {zi} are uniformly distributed in [zmin, zmax]. There
are m mobile AG sinks {Mi} carried by people, machineries, or
robots inside region R2. The movement of those mobile sinks
can be either random or under control.

B. Spatio-Temporal Correlation Model
Unavailable data z(x, t) at location x and time stamp t can

be estimated by kriging algorithm [6]. If there are n sensors,
the unbiased estimation z∗(x, t) is a linear combination of the
latest available data of all the n sensors {z(xi, ti), i = 1, 2, ... n}:

z∗n(x, t) =
∑n

i=1 αi

[
z(xi, ti) − µ

]
+ µ , (5)

where {α1, α2, ..., αn} are determined to minimize the error
variance. Then the minimum error variance is derived:

σ2
n = C(0)

[
1 −

∑n
i=1 α

opt

i · ρ(xi, x,∆ti)
]
, (6)

where C(0) is the variance of the data; ρ(xi, x,∆ti) is the corre-
lation function between the data at the space-time coordinate
(xi, ti) and the data at the coordinate (x, t); ∆ti = t − ti. The
mean, variance, and correlation function of the monitored data
can be derived by the spatio-temporal models, which varies
from case to case in different applications. In this paper, we
use the soil moisture [7], [8] as an example. In this paper, only
the correlation function is needed, which is:

ρ(xi, x j,∆ti j) =
ηe−a∆ti j − ae−η∆ti j

η − a

(
1 +

rR di j

4

)
e−rR

di j
2 , (7)

where a is normalized soil water loss; 1/rR and 1/η are the
mean cell radius and duration of rain/irrigation, respectively;
di j is the distance between the two locations; ∆ti j = ti − t j.

C. Optimization Problem Formalization
The optimal sensor density in WUSNs is actually the

minimum sensor density that can guarantee a certain level of
overall monitoring accuracy. The overall monitoring accuracy
in a WUSN is measured by the average error of every position
and every time stamp through out the WUSN denoted by
E
[
σ2]. Then the density optimization can be formalized as

Given : Underground channel and spatio-temporal model,
Number and mobility model of mobile sinks.

Find : min λ

s.t. : E
[
σ2] < σ2

max, (8)



where σ2
max is the maximum tolerable mean error. To solve this

optimization problem, we first calculate the objective function
E
[
σ2]. Due to the highly random network topology, it is

impossible to find out the exact expression of E
[
σ2]. Instead,

we use the upper bound of E
[
σ2] as the new objective function,

which can guarantee the required monitoring accuracy.
Notations are described first: tnow is the current time stamp;

{a←→b} denotes that the sensor at position a is connected to the
sensor at b by single/multiple hops; {a←→ sink at ∆t} denotes
that, at time stamp tnow − ∆t, the sensor at a is connected to
a mobile sink for the last time by single/multiple hops; and
{a

direct
←→ sink at ∆t} denotes that, at time stamp tnow − ∆t, the

sensor at a is directly covered by a mobile sink for the last
time. Then the average error is given by

E
[
σ2]= E

[
E
[
σ2

∣∣∣n sensors
]]

=

∞∑
n=1

E
[
σ2

n
] (λ SR2 )n

n!
e−λ SR2 , (9)

where the probability that there are n sensors is calculated
according to the Poisson point process; SR2 is the area of the
region R2; E

[
σ2

n
]

is calculated by (6). To avoid calculating the
partial derivatives to get the optimal weights {αopt

1 , α
opt

2 , ..., α
opt
n }

in (6), a simple weight setting {α∗1, α
∗
2, ..., α

∗
n} is used to

calculate the upper bound of the error variance, where α∗i = 1
if xi is the closest to x among the n sensors, otherwise α∗i = 0.
This setting is equal to the widely used strategy that the data
at the closest sensor is utilized. Then

E
[
σ2

n
]

(10)

≤ 2C(0)
{
1 − E

[
ρ(xi, x,∆ti)

∣∣∣∣xi is closest to x, i ∈ {1, ..., n}
]}
.

We first define three events as follows:
A : One of the n sensors is located at x′;
B : This sensor ←→ sink at ∆t ≤ ∆t′;
C : This sensor is closest to x than any other n−1 sensors.

Then,

E
[
ρ(xi, x,∆ti)

∣∣∣∣xi is closest to x, i ∈ {1, ..., n}
]

(11)

≥ E
[
ρ(x′, x,∆t′)

∣∣∣A, B,C]
=

∫
x∈R2

1
SR2

∫ ∆tmax

0

1
∆tmax

∫
x′∈R2

ρ(x′, x,∆t′) fx′ (A,B,C) dx dx′ d∆t′ ,

where ∆tmax is the maximum usable time deviation, i.e. for
∆t > ∆tmax, the temporal correlation is very small.

The probability density function (pdf) of the conditions
{A, B,C} can be calculated as

fx′ (A,B,C) = fx′ (A) · P(C|A) · P(B | A,C) , (12)

where

fx′ (A) = n
1

SR2
, P(C|A) =

(
1 −

SC2∩R2

SR2

)n−1
,

P(B | A,C) ' P(B′0) +
[
1 − P(B′0)

]
· (n − 1) · P(B′i) , (13)

where C2 is the circular region centered at x with radius
dxx′ = ||x′ − x||; SC2∩R2 is the area of the joint region of C2

and R2; event B′0 and B′i are defined as

B′0 : x′
direct
←→ sink at ∆t ≤ ∆t′;

B′i : x′←→xi
S not via relay sensors inside region C2,

and xi
S

direct
←→ sink at ∆t ≤ ∆t′,

where {x1
S , x

2
S , ..., x

n−1
S } are the positions of the other n − 1

x'

x

xS1

xS2

xS3II

II

III

I

Fig. 1. Mapping the WUSN on a lattice L (plain) and its dual L′ (dashed).

sensors. By substituting (10)-(13) into (9) and using the
identical equation

∑∞
n=0

λn

n! e−λ ≡ 1,∀λ, we derive:

E
[
σ2] ≤ 2C(0)

{
1 − E[closest ρ]

}
, (14)

where

E[closest ρ]≥
λ

∆tmaxSR2

∫∫∫
x, x′∈R2

∆t′∈[0,∆tmax]

ρ(x′, x,∆t′) · e−λSC2∩R2 (15)

·
{
P(B′0) + λ·(SR2−SC2∩R2 )·

[
1 − P(B′0)

]
·P(B′i)

}
· dxdx′d∆t′ ,

where

P(B′0) = P(x′
direct
←→ sink at ∆t ≤ ∆t′) , (16)

P(B′i) =
1

SR2−SC2∩R2

∫
xS∈R2−C2

P(xS
direct
←→sink at ∆t ≤ ∆t′)

· P(x′↔xS not via C2) dxS , (17)

where P(x′↔xS not via C2) is the probability that the sensor
at x′ is connected to the other sensor at xS without using relay
sensors inside region C2.

According to (14) and (15), the upper bound of the average
monitoring error E

[
σ2] is determined by the correlation func-

tion ρ(xi, x j,∆ti j) in (7) and the probabilities P(B′0) and P(B′i)
in (16) and (17). To calculate P(B′0) and P(B′i), two probabili-
ties, P(x′↔xS not via C2) and P(y

direct
←→sink at ∆t ≤ ∆t′) need

to be analyzed, where y = x′ or xS . Hence, the sensor
density optimization problem is decomposed into a network
connectivity probability analysis on P(x′↔xS not via C2) and
a sink mobility analysis on P(y

direct
←→sink at ∆t≤∆t′).

D. Network Connectivity Analysis
Proposition 1: The lower bound of the probability that a

UG sensor located at x′ is connected to another UG sensor
located at xS by single or multi-hops without using the relay
nodes inside the circular region C2 is given by

P(x′↔xS not via C2) ≥
(
1 − e−

2
5 λR2

UG−UG
)ε(x′, xS , x)

, (18)

where RUG−UG is the communication range of the UG-UG
channel that is derived in Section II; the detailed expression
of the function ε(x′, xS , x) is given in the proof. �

Proof: We use similar strategy we developed in [3], [4]
to prove this proposition. As shown in Fig. 1, we first map
the WUSN on a lattice L (plain) and its dual L′ (dashed). The
vertices of L′ are placed in the center of every square of L.
The edges of L′ cross every edge of L. Hence, there exists a
one-to-one relation between the edges of L and L′. L and L′
have the same edge length d = 1

√
5
RUG−UG. The edge length

is designed so that two UG sensors deployed in two adjacent
squares of the lattice L are guaranteed to be connected to each
other. One vertex of the dual lattice is located at x′. An edge



l of the L is said to be open if both squares adjacent to l
contains at least one UG sensor. An edge l′ of the L′ is said
to be open if and only if the corresponding edge of L is open.
A path of the L or L′s is said to be open (closed) if all edges
forming the path are open (closed).

If there is an open path of L′ connecting the two squares in
L where x and xS are located, these two sensors are guaranteed
to be connected. The set of all open paths connecting x and
xS without using the relay nodes inside region C2 is denoted
as {Po

i , i = 1, 2, ...}, then

P(x′↔xS not via C2) = P
(
∪∞i Po

i

)
≥ P(Po

i ) , (19)

where the probability of a certain open path P(Po
i ) is used as

the lower bound of P(x′↔ xS not via C2). To maximize the
lower bound, the shortest open path is selected. Hence, the
probability of the shortest open path in L′ connecting x′ and
xS is calculated as the lower bound of P(x′↔xS not via C2):

P(x′↔xS not via C2) ≥ (1 − q)ε(x
′, xS , x)+1 , (20)

where ε(x′, xS , x) is the length of the shortest open path
connecting x′ and xS ; q is the probability that no sensor exists
in a certain square:

q = P(No sensor in a square) = e−
1
5 λR2

UG−UG . (21)

The shortest open path may not be a simple straight line
since relay nodes can not be inside region C2. As shown in
Fig. 1, a rectangular circuit C1 is set up so that if the open
path does not via the squares inside C1, the relay nodes along
the open path are guaranteed to be outside of circular region
C2. The width and length of the rectangular circuit C1 are wcd
and lcd, respectively, where

wc =

2
√

5dxx′

RUG−UG
+ 0.5

 , lc = 2

√

5dxx′

RUG−UG
− 0.5

 + 1, (22)

where dae means rounding a to the nearest integer ≥ a; dxx′ =
||x′−x|| is the distance between x′ and x, which is the radius of
region C2. Construct a new Cartesian coordinate by setting x′
as the origin, e f as the y−axis (x is on the positive of y-axis).
The new coordinate of xS is (xnew

S , ynew
S ). As shown in Fig. 1,

the possible positions of xS are divided into three regions. In
different regions, the shortest path connecting x′ and xS is
different, e.g. path P1, P2, and P3 in Fig. 1. The length of the
shortest path is ε(x′, xS , x), and

ε(x′, xS , x) (23)

=



⌈ √
5 |xnew

S |

RUG−UG

⌉
rnd

+

⌈ √
5 |ynew

S |

RUG−UG

⌉
rnd

, if xS ∈ Region I

2 +

⌈ √
5 |xnew

S |

RUG−UG

⌉
rnd

+

⌈ √
5 |ynew

S |

RUG−UG

⌉
rnd

, if xS ∈ Region II

lc + 3 −
⌈ √

5 |xnew
S |

RUG−UG

⌉
rnd

+

⌈ √
5 |ynew

S |

RUG−UG

⌉
rnd

, if xS ∈ Region III

,

where daernd means rounding a to the nearest integer; Region I:
ynew

S ≤ − 1
2 d; Region II: ynew

S > − 1
2 d and |xnew

S | ≥
1
2 lcd; Region

III: ynew
S > (wc−

1
2 )d and |xnew

S | <
1
2 lcd. Since xS cannot appear

inside the circuit C1, there is only one undiscussed region for
xS : the square in L that contains x′, where ε(x′, xS , x) ≡ 0.
Finally, substituting (23) into (20) completes the proof.

E. Sink Mobility Analysis

In this subsection, we analyze the random and controlled
mobility of the AG mobile sinks to derive the probability

P(y
direct
←→ sink at ∆t ≤ ∆t′) in (16) and (17). Due to the query-

based data collection scheme, the effective communication
range of the mobile sink is RAG−UG given in Section II.

1) Random Sink Mobility: The mobility of people and
vehicles carrying the mobile sinks can be modeled by the
widely used Random Waypoint (RWP) Model [10]. In RWP
model, the random movement of a node is defined by a
sequence of steps consisting of a flight followed by a pause.
In each flight, the destination is selected uniformly in region
R2. The speed v and the pause τ are chosen uniformly from
[vmin, vmax] and [0, τmax], respectively. The lower bound of the
probability P(y

direct
←→ sink at ∆t ≤ ∆t′) under the RWP model

has been derived by our work [4]. Hence, we have:
Proposition 2: Given m mobile sinks in region R2, at time

stamp tnow − ∆t, the sensor at coordinate y is directly covered
by a mobile sink for the last time. Then, the probability that
∆t ≤ ∆t′ is lower bounded by

P(y
direct
←→sink at ∆t ≤ ∆t′) ≥ 1 − γ b

∆t′
tD
c
, (24)

where γ and tD are determined by the AG-UG range RAG−UG,
the size of the field R2, and the RWP model. The detailed
expressions of γ and tD can be found in [4]. �

2) Controlled Sink Mobility: Since the randomly moving
sinks are inefficient to collect data, dedicated robots can
be employed to improve the data collection efficiency. We
adopt the most straightforward strategy to control the multiple
robots: The whole region R2 is divided into m subregions
with equal area. Each robot moves inside one of the m
subregions with fixed loop route covering the whole subregion.
In each subregion, the loop route with minimum length lroute
is designed for each sink to cover every position.

lroute ≤
S R2/m

RAG−UG(zmax)
. (25)

where RAG−UG(zmax) is the communication range of AG-UG
channel when the sensor is buried at the maximum depth.

Assuming that all the mobile sinks move at a constant
velocity vrobot without pause. Then the time duration for
a sink to complete one loop route in the subregion is
Troute = lroute/vrobot. That means the UG sensor at any position
inside the monitored region can be covered by a sink at least
once in every period Troute. Therefore, for controlled AG sinks,

P(y
direct
←→sink at ∆t ≤ ∆t′) (26)≥ ∆t′

Troute
≥

∆t′m vrobot RAG−UG(zmax)
S R2

, if 0 ≤ ∆t′ < S R2

m vrobot RAG−UG(zmax)

= 1 , otherwise
.

F. Sensor Density Optimization Solution
Substituting (18), (24), and (26) into (14)-(17) yields the

upper bound of the average monitoring error in WUSNs with
random or controlled sink mobility, which is denoted as E

[
σ2].

Then, the optimal sensor density in WUSNs with random or
controlled sink mobility is derived:

λopt = min
{
λ : E

[
σ2] > σ2

max

}
. (27)

V. N A

In this section, we numerically analyze the effects of mul-
tiple system configurations and environmental conditions in
WUSNs. Except studying the effect of certain parameters,
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default values are set as follows: The monitored region is a
100 m × 100 m square. The UG sensors are deployed accord-
ing to a Poisson point process with intensity λ. The burial
depths are uniformly distributed in the interval [0.3, 0.7] m.
For the randomly moving sinks, the velocity of each flight is
uniformly chosen from [0.5, 3] m/s. The pause duration is uni-
formly chosen from [0, 5] min. For the controlled robots, the
constant moving velocity is set to be 0.5 m/s. The transmitting
power is 10 mW at 900 MHz. The minimum received power
for correct demodulation is −90 dBm. The antenna height
of the AG mobile sinks is 1 m. The mean volumetric water
content (VWC) in the soil is 5%. The normalized soil water
loss a = 20 /day. The irrigation cell radius 1/rR = 5 m and
the irrigation duration 1/η = 60 sec. The monitoring error is
represented by the normalized error, which is calculated by
E[σ2

norm] = E(σ2)/C(0). The normalized maximum tolerable
error (σ2

max)norm is set as 10%. Each simulation result is
averaged over 500 iterations.

In Fig. 2, the theoretical bound of the monitoring error
derived in Section IV is validated by simulations. It shows that
the error bound is tight enough to serve as the optimization
objective function under various system configurations. The
optimal sensor density can be read from Fig. 2 by checking
the x-coordinate of the intersection point of the error upper
bound and the error threshold.

In Fig. 3, the effect of the number and mobility of mobile
sinks on the optimal sensor density is captured. Both random
and controlled mobility models with different velocities and
pause times are considered. It indicates that the optimal
sensor density can be significantly reduced by three ways: 1)
introducing more mobile sinks, 2) increasing the sink velocity
and reducing the pause time, and 3) employing controlled
mobile sink instead of the randomly moving sinks. Note that
when the moving velocity of the controlled mobile sink is
high, the effect of the number of mobile sinks is not obvious
since the data collection efficiency is already high enough.

The effects of the sensor burial depth and soil water content
are analyzed in Fig. 4 and Fig. 5, respectively. In Fig. 4, the
optimal sensor density is give as a function of the mean burial
depth. When changing the mean burial depth, we assume that
the span of the random depths remains the same, which is
0.4 m. In Fig. 5, the optimal sensor density is given as a
function of mean volumetric soil water content. As discussed
in Section II, the communication ranges of the three types of
channels in WUSNs significantly decrease as the UG sensor
burial depth and the soil water content increase. Therefore, the
optimal sensor densities of WUSNs dramatically increase as
the mean burial depth or the soil water content increases.
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Fig. 4. Optimal sensor density as a
function of the mean burial depth.

6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

Soil Water Content (%)

O
pt

. S
en

so
r 

D
en

si
ty

 (
m−
2 )

 

 
Random, M=3
Random, M=1
Control, M=5
Control, M=1

Fig. 5. Optimal sensor density as a
function of the soil water content.

VI. C
The harsh and dynamic underground channel conditions

cause prohibitively high density of UG sensors to achieve
fully connected networks, which results in extremely high de-
ployment/maintenance cost in WUSNs. In this paper, we first
proposed a spatio-temporal correlation-based data collection
scheme to release the unfeasible sensor density requirement
of the full connectivity in WUSNs. More importantly, we
provide an explicit solution for the sensor density optimization
in WUSNs under the proposed data collection scheme, which
can guarantee the overall monitoring accuracy with minimum
deployment/maintenance cost. To formalize the optimization
solution, the dynamic underground channel conditions, the
spatio-temporal correlation, the network connectivity, and the
random or controlled mobility of mobile sinks are jointly
analyzed. Our optimization solution clearly captures the effects
of multiple system and environmental parameters, including
the the number and mobility of the mobile sinks, sensor
burial depth, the soil water content, and the spatio-temporal
model of the monitored physical quantity. The developed
optimization solution provides a flexible tool to determine the
optimal sensor density for different application requirements
and environmental conditions in WUSNs.
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