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Abstract—Wireless multimedia sensor networks (WMSNs)
are interconnected devices that allow retrieving video and audio
streams, still images, and scalar data from the environment. In
a densely deployed WMSN, there exists correlation among the
visual information observed by cameras with overlapped field of
views. This paper proposes a novel spatial correlation model for
visual information in WMSNs. By studying the sensing model and
deployments of cameras, a spatial correlation function is derived
to describe the correlation characteristics of visual information ob-
served by cameras with overlapped field of views. The joint effect
of multiple correlated cameras is also studied. An entropy-based
analytical framework is developed to measure the amount of
visual information provided by multiple cameras in the network.
Furthermore, according to the proposed correlation function
and entropy-based framework, a correlation-based camera selec-
tion algorithm is designed. Experimental results show that the
proposed spatial correlation function can model the correlation
characteristics of visual information in WMSNs through low
computation and communication costs. Further simulations show
that, given a distortion bound at the sink, the correlation-based
camera selection algorithm requires fewer cameras to report to
the sink than the random selection algorithm.

Index Terms—Camera selection, spatial correlation, visual infor-
mation, wireless multimedia sensor networks.

I. INTRODUCTION

W IRELESS multimedia sensor networks (WMSNs) are
interconnected devices that allow retrieving video and

audio streams, still images and scalar data from the environ-
ment [1]. WMSNs are widely used in applications such as video
surveillance, environmental monitoring, and industrial process
control. Usually, WMSNs should be designed to deliver multi-
media content with a certain level of quality-of-service (QoS).
Compared with traditional wireless sensor networks that deal
with scalar data, WMSNs have more design challenges. The re-
source constraints of sensors such as energy constraints and lim-
ited processing capabilities still exist. Moreover, visual informa-
tion, the dominating part of multimedia data, requires more so-
phisticated processing techniques and much higher bandwidth
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to deliver. Our study will focus on the processing and commu-
nication of visual information in WMSNs.

Since uncompressed raw video streams require excessive
bandwidth that is impossible to be supported by wireless mul-
tihop networks, multimedia source coding must be employed
to achieve high compression efficiency. Today’s standardized
video coding technologies, such as MPEG and H.26x [19],
achieve high compression performance at the expense of ex-
tensive computation at the encoder. In contrast, distributed
video coding [21] allows simple and low power encoder, while
the decoder is high power and loaded with extensive compu-
tation burden. Thus, distributed video coding is regarded as
a promising solution for video coding in WMSNs. Current
distributed video coding technologies rely on channel coding
to exploit the correlation among adjacent frames [7], [15].
However, it is not easy to attain accurate estimations of the
correlation structure among adjacent video frames, resulting in
limited encoding efficiency of distributed video coding.

Multimedia source coding is not the only way to reduce the
amount of data to be transmitted in the network. In [1], collab-
orative multimedia in-network processing is suggested as an ef-
fective way to avoid the transmission of redundant information.
According to the requirements of specific applications, each
sensor node can filter out uninteresting events locally, or coor-
dinate with each other to aggregate correlated data. To design
filtering and aggregation algorithms for WMSNs, the correla-
tion characteristics of visual information from different sensors
need to be studied. In [16], a theoretical spatio-temporal cor-
relation model is developed for scalar data in wireless sensor
networks. However, as visual information is much more com-
plex than scalar data, the model in [16] for scalar data cannot be
directly applied to visual information.

In many recent research efforts for WMSNs, image pro-
cessing techniques are utilized to design collaborative pro-
cessing. In [17], images from correlated views are roughly
registered using correspondence analysis. Each sensor trans-
mits a low-resolution version of a common area, and the sink
combines multiple low-resolution versions into a high-res-
olution image. In [20], spatial correlation is obtained by an
image shape matching algorithm, while temporal correlation
is calculated via background subtraction. Based on spatial
and temporal correlation information, images from corre-
lated sensors are transmitted collaboratively. However, the
performances of image processing algorithms are application
dependent: different types of images will require different
processing schemes [8]. Also, image processing techniques are
complicated and computation extensive, which will bring about
extra computation costs for sensor nodes.
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Cameras are directional sensors with limited field of views
[12], and the image observed by a camera is directly related to
its field of view. In [12], the correlation degree of two cameras
is defined as the portion of overlapped sensing area to the en-
tire area of the field of view. A video processing scheme based
on correlation is also proposed in [12]: two sensors cooperate
with each other, and each sensor transmits a part of its observed
image to the sink, and then the sink will combine the partial im-
ages together. But this scheme is only valid when the sensing
directions of the two sensors do not differ very much. Besides,
this processing method is limited between two sensors. How to
deal with cooperative processing of more than two sensors is a
problem that has not been well investigated.

In this paper, we study the correlation characteristics of vi-
sual information in WMSNs. Trying to avoid specific image al-
gorithms, we propose a general correlation model for resource-
constrained sensor networks. Our main contributions include
the following.

1) We design a novel spatial correlation function to describe
the correlation characteristics for the images observed by
cameras with overlapped field of views.

2) We propose an entropy-based analytical framework to
evaluate the joint effect of multiple correlated camera
nodes.

3) Based on the entropy-based framework, we introduce a
correlation-based camera selection algorithm.

The remainder of the paper is organized as follows. Section II
briefly states the problems to be studied. The spatial correlation
function is introduced in Section III. Section IV introduces the
entropy-based framework for multiple correlated cameras and
the correlation-based camera selection algorithm. Experimental
results are presented in Section V, and conclusions are given in
Section VI.

II. PROBLEM STATEMENT

In a multimedia sensor network, multiple camera sensors are
deployed to provide multiple views, multiple resolutions, and
enhanced observations of the environment [4]. Fig. 1 gives an
example of a WMSN deployed with cameras. A typical scenario
of WMSN is: the application specifies which area it is interested
in, and the cameras that can observe this area will transmit their
observations to the sink. For a certain area of interest, suppose
there are camera sensors that can observe the area of interest,
we denote them as a group , and their ob-
served images as . There exists correlation
among the observations of this group of cameras, which can be
exploited to design multimedia in-network processing schemes.

A. Spatial Correlation

Firstly, we study the correlation characteristics of the im-
ages observed by different cameras. For Camera and Camera

in the group , we will derive a corre-
lation coefficient to describe the degree of correlation be-
tween image and image . For the group of camera sen-
sors, the correlation among the images observed by these cam-
eras will be represented as a correlation

Fig. 1. WMSN with cameras and areas of interest.

matrix , denoted as , where is the correla-
tion coefficient of image and image .

B. Joint Effect of Multiple Correlated Cameras

After we obtain the spatial correlation coefficient, we study
the joint effect of multiple correlated cameras in WMSNs. In
particular, we study how to measure the amount of visual in-
formation from multiple cameras in a WMSN. Intuitively, the
visual information provided by multiple cameras should be re-
lated to the correlation characteristics of the observed images. If
the images observed by these cameras are less correlated, they
will provide more information to the sink. We develop an en-
tropy-based framework to estimate the amount of information
from multiple correlated cameras.

C. Correlation-Based Camera Selection

Since the delivery of visual information needs very high
bandwidth, which may reduce the lifetime of the network, the
communication load in WMSNs should be reduced as much
as possible. Suppose a total number of cameras can observe
the area of interest, if network resources permit, we can let all
these cameras transmit their observed images to the sink, so
that the users at the sink can obtain comprehensive information
about the area. However, if the sink/application allows a certain
level of distortion of the observations, it may not be necessary
for all the cameras to report their observed information to the
sink.

Consequently, we define a camera selection problem as fol-
lows: if only cameras are allowed to transmit
their observed images to the sink, how to select cameras out
of the cameras so that the sink can gain the maximum amount
of information. Based on our study on the joint effect of mul-
tiple cameras, we design a correlation-based algorithm to select
cameras under distortion constraints.

III. SPATIAL CORRELATION FOR VISUAL INFORMATION

A. Sensing Model

Different from scalar data sensors, the sensing of a camera is
characterized by directional sensing and 3-D to 2-D projection.
In computer vision, this sensing process is usually described by
the pinhole camera model [6]. Fig. 2 illustrates an example of
a pinhole camera. The camera’s center of projection is at the
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Fig. 2. Camera projection model.

Fig. 3. Field of view.

origin of a Euclidean coordinate system, and its sensing direc-
tion is along the axis. The focal length of the camera is , so
the image plane is the plane . A scene point P with coor-
dinates is mapped to on the image plane,
where and are given by

(1)

A camera also has limited sensing range. It can only observe
the objects within its field of view (FoV). A simplified 2-D FoV
model is proposed in [12]: as shown in Fig. 3, a camera’s field
of view is determined by four parameters , where

is the location of the camera, is the sensing radius, is the
sensing direction (the center line of sight of the camera’s field
of view), and is the offset angle.

A camera’s focal length can be estimated by various calibra-
tion methods [6]. More recently, several methods have been pro-
posed for the calibration and localization of cameras in sensor
networks [2], [5]. Each camera’s focal length , location ,
and sensing direction can be estimated as shown in [5]. In
the following analysis, we will derive a spatial correlation func-
tion based on these parameters.

B. System Model

We set up a world coordinate system
for the area of interest as shown in

Fig. 4(a), in which the origin is the center of the area of interest,
and the plane is the ground plane. Seven reference
points, which can also be regarded as feature points or key
points in a scene, are chosen as: , ,

, , , ,
. These reference points form six unit reference

vectors along the orthogonal directions in the 3-D world: ,
, , , , .

We consider the case when all the camera sensors are placed
on the ground plane and their sensing directions are
also within the ground plane. For a camera sensor , the

Fig. 4. Reference points in the area of interest and deployment of cameras.

coordinates of its optical center can be denoted as .
The sensing direction of can be described by a unit vector

, where , , and is the angle
between the sensing direction and the axis.

The projections of the reference points on a camera will
change as the camera’s location and sensing direction change.
By comparing the projections of the same reference points at
different cameras, we can understand the correlation character-
istics among different cameras.

C. Projection Geometry

Fig. 4(b) shows the deployment of three cameras in the world
coordinate system , where the origin is the center of the
area of interest, and the XOY plane denotes the ground plane.
Camera 1 is located at with its sensing direction along
the axis. Camera 2 is located at , and its
sensing direction rotates an angle of about the axis. For both
Camera 1 and Camera 2, their principle axes pass the center of
the area of interest (the origin). Camera 3 has the same sensing
direction as Camera 2, but its principle axis does not pass the
origin. The distance from the center to its principle axis is , as
shown in Fig. 4(b). The optical center of Camera 3 is

. Although the locations and sensing
directions of these three cameras are different, the depths for
the center of the area of interest in all the three cameras have
the same value . In addition, we assume that all these cameras
have the same focal length .

To calculate the projections of the reference points in a
camera, a coordinate transform is first needed to obtain the
coordinates of the points in the camera’s coordinate system.
For example, the coordinate system of Camera 1 (Fig. 2) and
the world coordinate system are separated by a pure
translation. For an arbitrary point P in the space, we have

(2)

where is the coordinate vector of point in the coordinate
system of Camera 1, while is the coordinate vector in the
world coordinate system . These two vectors are related by

, the coordinate vector of the origin in seen in the
coordinate system of Camera 1. Here .

Therefore, the coordinates of the reference points in the
coordinate system of Camera 1 are as follows: ,

, , , ,
, .
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Fig. 5. Projections of reference points and vectors.

TABLE I
PROJECTIONS OF REFERENCE POINTS

Based on the projection model in (1), we can find the pro-
jections of these reference points in Camera 1: ,

, , , ,
, . The projections of refer-

ence points on Camera 1 are plotted in Fig. 5(a).
As for Camera 2, its coordinate system can be derived from

the world coordinate system as follows: rotate the world
coordinate system counterclockwise for an angle of , and then
translate the rotated system along the negative direction of
axis for a length of , given as

(3)

where is the translation offset vector, ,
and is the rotation matrix

Similarly, the relationship between the coordinate system of
Camera 3 and the world coordinate system is related as

(4)

where the rotation matrix is the same as that of Camera
2, , while the translation offset vector satisfies

.
As the case of Camera 1, the projections of reference points

on Camera 2 and Camera 3 can be calculated in the same way.
Table I lists the projections of the seven reference points on the
three cameras, and Fig. 5 illustrates the positions of reference
points on the three cameras. Based on the coordinates of the
reference points, the values of the corresponding unit vectors
are also calculated, which are listed in Table II.

TABLE II
PROJECTIONS OF REFERENCE VECTORS

D. Study of Correlation

1) Scaling Effect: Comparing the projections of the reference
vectors in Table II, we find that the lengths of , , ,
and are different in the three cameras, but the length of

remains to be a constant value. The reason is that the
points , , and have the same depth in all the three
cameras, and that the cameras also have the same focal length

. Both the depth and the focal length can influence the size of
a projection. Thus, we define a scaling factor, , as the lengths
of the projections of OE and OF, given by

(5)

2) Translation Effect: As can be seen in Fig. 5, the projec-
tions on Camera 1 and Camera 2 are both in the center of the
image planes, but the projections on Camera 3 have an offset
from the center of the image plane. The deviation from the
center of the area of interest to the camera’s principle axis has
caused the translation of the projections. Based on the projec-
tions of reference points on Camera 3, we define a translation
factor as

(6)

3) Correlation Coefficient: As shown in Table II, the lengths
of vectors , , , and will change as the camera’s
location and sensing direction change. Based on this observa-
tion, we design a disparity function to reveal the disparity be-
tween the projections of reference vectors on different cameras.
Suppose that Camera and Camera are two arbitrary cameras
on the ground plane that can observe the area of interest, the dis-
parity function is derived as follows.

1) Determine the positions and sensing directions of Camera
and Camera .

2) Based on the projection model in (1), compute the projec-
tions of reference vectors in each camera.

3) Divide the projections of reference vectors by the scaling
factor (5), so that we can get a set of normalized
projection vectors for each camera.

4) Compute the distance for each pair of normalized vectors
, , , and . For example, if the projection of
is on Camera , and

on Camera , the distance is calculated as

(7)
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5) The disparity between the images at Camera and Camera
, denoted by , is defined as the average distance of the

four vectors:

(8)

For Camera 1 and Camera 2 in Fig. 4(b), according to the
results in Table II, the disparity between the images at Camera
1 and Camera 2 is calculated as

(9)

Generally, for Camera and Camera with position parame-
ters and [Fig. 4(b)], the disparity between
the images at the two cameras is given by

(10)

We present a simulation to show how the disparity value
varies as a function of the deployments of cameras. Refer to
Fig. 4(b): we let Camera 1 stay fixed, and let the sensing direc-
tion of Camera 2 change from to 90 . The sensing
direction difference between Camera 2 and Camera 1 is also .
Set the depth for Camera 1 and Camera 2. The
disparity between Camera 1 and Camera 2 in (9) is illustrated
as a function of (in degrees) in Fig. 6.

The disparity value increases as the sensing direction differ-
ence increases. The larger the disparity value, the more differ-
ences exist between the two images, i.e., the images are less cor-
related. In the above scenario, the largest disparity value goes to
1 when the sensing directions of the two cameras are perpen-
dicular, for which we can say that the two cameras are weakly
correlated. For the convenience of further analysis, we bound
the disparity value from 0 to 1 as follows:

(11)

Consequently, we can define a correlation coefficient that is
complementary to the disparity function:

(12)

Fig. 6. Illustration of the disparity function.

When the correlation coefficient is 0, it means that the two
images are independent of each other. If it equals to 1, the two
images are highly correlated. The larger the correlation coeffi-
cient, the more correlated are the two images.

E. Discussion

In WMSN applications, as long as the area of interest is spec-
ified, and the locations and sensing directions of cameras are
estimated, the correlation characteristics of cameras with over-
lapped field of views can be obtained as introduced above. The
proposed correlation model can help to design the differential
source coding between cameras as well as the aggregation of
visual information in the network.

The proposed model depends on the selection of reference
points/vectors in the area of interest. Six unit vectors along three
orthogonal directions in the 3-D world are chosen in the above
analysis. For a WMSN application, the reference points should
be chosen properly based on specific application requirements.
In addition, a camera’s field of view will be reduced when it is
blocked by some obstacles. To guarantee that our model works
well, a camera’s practical field of view needs to be estimated.

IV. JOINT EFFECT OF MULTIPLE CORRELATED CAMERAS

In this section, we study the joint effect of multiple correlated
cameras. We investigate how to measure the amount of visual
information from multiple correlated cameras and then propose
a correlation-based camera selection algorithm.

A. Entropy-Based Approach

In information theory [3], the concept of entropy is used to
measure the amount of information of a random source. If an
image is interpreted as a sample of a “gray-level source”, the
source’s symbol probabilities can be modeled by the gray-level
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histogram of the observed image. An estimate of the source’s
entropy can be generated as [8]

(13)

where is the number of all possible gray-levels, and
is the probability of the th gray-level. It denotes the average
amount of information per pixel in the image.

If a camera transmits its observed image to the sink,
the amount of information gained at the sink is . (We
do not consider the information loss caused by lossy compres-
sion or packet loss during transmission.) If the group of camera
sensors, , transmit their observed im-
ages to the sink, the amount of information
gained at the sink will be the joint entropy .
Our objective is to estimate the joint entropy of multiple cam-
eras.

B. Joint Entropy of Two Cameras

We consider two cameras that can observe the area of interest.
Suppose each camera has captured one image about the area of
interest, denoted as image A and image B. The joint entropy of
A and B is

(14)

where is the mutual information of the two sources.
can be interpreted as the reduction in the uncertainty

of one source due to the knowledge of the other source:

(15)

The definition of in probability form is given as

(16)

where and are the probability distributions of the
pixels in image A and image B, and is the joint proba-
bility distribution of the two sources.

Mutual information is a measure of dependence between two
sources: the more and are correlated, the larger the mutual
information .

In [14], a normalized form of mutual information, entropy
correlation coefficient (ECC), is defined as

(17)

The entropy correlation coefficient ranges from zero
to one, where zero indicates that source and are indepen-
dent, while one indicates that source equals to source . The
larger the value, the more these two sources are corre-
lated.

Based on (14) and (17), the joint entropy of and can be
expressed as a function of , , and :

(18)

Since and can be calculated at each camera using
(13), if can be estimated, the joint entropy will
be obtained. However, to calculate and , a joint
probability distribution of the two sources needs to be estimated
(16). Due to the complexity of image contents and the difficulty
in image modeling, it is difficult to get an accurate estimation of
the joint probability distribution [14]. Besides, estimating the
joint probability also requires large bulk of computation [14].
If joint probability distribution is to be estimated in a sensor
network, cameras at different locations must exchange their ob-
served images, which will introduce a lot of communication
burden in the network.

It can be seen that the proposed correlation coefficient in (12)
has the same intrinsic meaning as : both ranging from 0 to
1 and denoting the degree of correlation between two sources.
However, if cameras’ parameters and deployment information
are given, it is much easier to obtain the proposed correlation co-
efficient. Considering the limited processing capability of sen-
sors, we propose to estimate by the proposed correlation
coefficient. If we replace in (18) by the proposed corre-
lation coefficient , we can obtain an estimation of the joint en-
tropy of and as

(19)

Therefore, the amount of information that can be gained from
image and image together depends on the correlation de-
gree between and . The more and are correlated, the
less joint entropy can be gained from and together. That is
to say, if two camera sensors transmit their images to the sink,
the amount of information gained at the sink will be larger if the
two sensors are less correlated.

C. Joint Entropy of Multiple Cameras

In this section, we extend our study of joint entropy to the
case of more than two cameras. Suppose there is a group of
camera sensors with their observed im-
ages . We are interested in estimating the
joint entropy for this group of sensors. If

is to be computed by its definition in prob-
ability, the joint probability distribution of these images needs
to be estimated. However, it is difficult to estimate the joint prob-
ability distribution of multiple sources, especially when is
large.

A feasible approach is to make use of the joint entropy of two
cameras in the last section. As there are individual elements
in the group , we can merge two of them
together, so that the joint entropy of these two elements can
be calculated by (19). We treat these two elements as a whole
element, then the number of elements in the group reduces to
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. If we repeat this process, the individual sensors will be
combined into a single element in the end. As the joint entropy
of merged sensors are calculated along the merging process, the
joint entropy can be obtained when the
merging process is completed.

We design an algorithm to estimate the joint entropy
of multiple cameras based on the idea of hierarchical
clustering [10]. As long as the entropy of each single
image and the correlation
matrix are given, the joint entropy

can be estimated through the hierarchical
clustering process. The details of the estimation algorithm are
presented in Algorithm 1, where denotes the set of clusters,
and is the correlation coefficient between
cluster and cluster .

Algorithm 1: Estimate the Joint Entropy of Multiple Cameras

begin

, .

for to do

Find

Find the most correlated pair of clusters in .

Merge and into a new cluster .

(19).

for , , do

Compute .

end for

Remove and from ; Add the new cluster
into .

end for

return

end

In step of Algorithm 1, the correlation coefficient between
one cluster and another cluster can be obtained by the greatest/
shortest/average correlation coefficient from any member of
one cluster to any member of the other cluster [10], which are
referred to as single-linkage/complete-linkage/average-linkage
clustering.

The following is an example of the estimation of joint en-
tropy. Suppose there is a group of five camera sensors. Without
loss of generality, we assume that the entropy of a single image

Fig. 7. Example of hierarchical clustering.

TABLE III
HIERARCHICAL CLUSTERING STEPS

is a constant value, denoted as . A
correlation matrix for these five sensors is given by

(20)

Apply Algorithm 1 to this group of sensors, and use the av-
erage-linkage clustering [10] metric in step . The clustering
process is illustrated in Fig. 7, and the results in each step of
clustering are shown in Table III. Comparing the values in the
correlation matrix (20) and the clustering steps in Fig. 7, one
can find that in every clustering step, nodes that contain the most
correlated images are merged into one cluster. As can be seen
from (19), the value of the joint entropy decreases as the corre-
lation degree of the two images increases. Therefore, the joint
entropies obtained from the clustering process are always rel-
atively small. The final result of the estimation algorithm is a
conservative estimation of joint entropy.

D. Correlation-Based Camera Selection

Suppose for an area of interest in a WMSN, a total number of
cameras can observe the area of interest. If network resources

permit, all these cameras can transmit their observed images to
the sink, so that the applications at the sink can gain comprehen-
sive information about the area. However, as the processing ca-
pabilities of sensors are limited, and the communication among
sensors causes huge energy consumption, sometimes the net-
work cannot support all these cameras to report their observa-
tions to the sink. Consequently, we define a camera selection
problem: if only cameras are allowed to transmit
their observed images to the sink, how to select cameras out
of the cameras so that the sink can gain the maximum amount
of information.

As in the last section, we also assume that the entropy of a
single image is a constant value here. The estimation of joint
entropy in (19) indicates that the less correlated are the two sen-
sors, the more information can be provided by the two sensors
together. Thus, to maximize the joint entropy of cameras,
we should try to minimize the correlation among the cameras to
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Fig. 8. Multiple view images. (a) Reference Image. (b) � � �� . (c) � � �� . (d) � � �� . (e) � � �� .

be selected. We propose a correlation-based algorithm to max-
imize the joint entropy of cameras. At each step of the al-
gorithm, we select one camera that is least correlated with the
cameras that have already been selected. The details are pre-
sented in Algorithm 2, where is the set
of images observed by these cameras, and denotes the set
of cameras that are already selected.

Algorithm 2: Correlation-Based Selection of Cameras

begin

, .

Find . Find the least

correlated pair of cameras.

Add the corresponding and into .

if then

for to

for do

.

end for

; Add into .

end for

end if

return

end

E. Distortion Function

For an area of interest in WMSN, we suppose a total number
of cameras can observe it, and denote their observed im-
ages as . The joint entropy of all these
sensors, , is the maximum amount of
information that can be gained for the area of interest. If a
subset of these sensors, denoted as , is
selected to report to the sink, the information gained at the sink
is .

We define a distortion function as the ratio of the decrease in
the amount of information to the maximum amount of informa-
tion, given by

(21)

The value of satisfies . It can be interpreted as
the percentage of information loss due to network resource con-
straints. Applications of WMSNs can use this distortion func-
tion as a metric to describe their requirements. For example, an
application may ask the network to transmit information within
10% or 20% of information loss.

It should be emphasized that the proposed distortion function
is different from existing image/video quality metrics. Com-
monly used image quality metrics, such as peak signal-to-noise
ratio (PSNR) and the recently developed structural similarity
(SSIM) [18], are designed to evaluate the degradation of a dis-
torted image compared to an original image, where distortion is
caused by lossy compression or loss during transmission.

However, our proposed distortion function is designed to
evaluate the joint effect of multiple images. Distortion is the
percentage of information loss caused by reporting a subset of
images to the sink. According to the derivation of joint entropy
in Algorithm 1, we can find that the value of distortion is related
to the number of selected cameras as well as the correlation
among the selected cameras.

V. PERFORMANCE EVALUATION

A. Spatial Correlation Coefficient

In this section, we present a set of experiments to evaluate the
performance of our spatial correlation model.

1) Validity of the Proposed Spatial Correlation Coeffi-
cient: We set up a scene as shown in Fig. 4(b): Camera 1 and
Camera 2 are placed to take pictures of an area of interest.
Camera 1 is placed along the axis, and Camera 2 rotates
an angle of , so the sensing direction difference between
Camera 2 and Camera 1 is . Set . A refer-
ence image is obtained at Camera 1, and then a group of ten
images are taken for Camera 2 with the following values:

.
Fig. 8 presents some of the images.

In Section III, we showed that the degree of correlation is
relevant to cameras’ sensing directions and their relative po-
sitions. Since the sensing directions and positions are already
known, the disparity between the test images on Camera 2 and
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Fig. 9. Proposed disparity function versus feature extraction algorithm.

Camera 1 can be easily calculated by function (10). The results
of the disparity values are presented in Fig. 9(a) as a function of
the sensing direction difference . The disparity increases as the
sensing direction difference increases.

The correlation between images can also be obtained by ap-
plying image processing algorithms. Here, we refer to a com-
monly used feature extraction algorithm in [13]. In this algo-
rithm, texture features are extracted from the images by Gabor
wavelet transform, and based on the wavelet coefficients, fea-
ture vectors in multiple scales and multiple directions are con-
structed. Finally, an average distance is calculated by averaging
all the feature distances in each feature space [13]. The av-
erage feature distances between the test images on Camera 2
and Camera 1 are calculated accordingly, and the results are pre-
sented in Fig. 9(b).

Comparing the results of the proposed model [Fig. 9(a)] and
the results of the feature extraction algorithm in [13] [Fig. 9(b)],
we find that in both cases, the disparity/distance value increases
as the sensing direction difference increases. This is also in ac-
cordance with our common sense: if we just observe the test
images in Fig. 8 with our eyes, we can also find that the two
images from Camera 2 and Camera 1 look more different when
their sensing direction difference is larger. Therefore, the
proposed spatial correlation coefficient is effective as it can re-
veal the correlation characteristics between images.

The slight differences between the results in Fig. 9(a) and (b)
may be explained by the intrinsic differences of the two
schemes. The proposed model is derived by studying cam-
eras’ sensing model and deployments; thus, the results are
just dependent on a few parameters. In contrast, the feature
extraction algorithm goes into details in an image. It is sensitive
to the noise in the images, and even a little change of the light
condition might influence the final results.

2) Costs for Exploiting Correlation: In this section, we dis-
cuss about the costs for exploiting correlation in WMSNs. As
shown in the example of WMSN in Fig. 1, a typical scenario
of WMSN application is: the application specifies which area it
is interested in, and the cameras that can observe this area will
work together to provide enhanced observations for the appli-
cation. Given an area of interest, suppose a group of cam-
eras can observe it. If the cameras in this group want to know
their correlation characteristics with each other, communication
and computation operations are needed for these camera sen-
sors. Note that it is a repetitive process to exploit correlation in

the network: the correlation characteristics are obtained with re-
spect to a certain area of interest; therefore, once the application
specifies for a different area of interest, the correlation charac-
teristics need to be investigated again.

We study a single hop case between two cameras, so that the
results will be independent of specific communication proto-
cols and network topologies. Assume two arbitrary cameras in
the group, Camera and Camera , are within the transmission
range of each other, and they will cooperate with each other to
obtain the correlation of their observed images.

The proposed correlation model is derived based on the
sensing model and deployment information of camera sensors.
In most sensor networks, localization algorithms are already
implemented, so that each camera knows its position in the net-
work. The focal length and sensing direction for each camera
can be estimated [5] and recorded in the deployment stage of
the network. Thus, when the application specifies a certain area
of interest, each camera can easily figure out its position with
respect to the area of interest [ , , and as shown in Fig. 4(b)].

To calculate the correlation between Camera and Camera ,
Camera just needs to transmit its four parameters to Camera
: , , as shown in Fig. 4(b), and its focal length . Once

Camera receives the four parameters, it can calculate the cor-
relation coefficient based on (12). The total energy consumption
will be composed of the energy consumption for transmitting
and receiving the four parameters and the energy consumption
to calculate the correlation coefficient. It can be seen that the
energy consumption for the proposed model is independent of
image sizes.

We take the commonly used feature extraction scheme in [13]
as a representative of the various image processing schemes.
As we have introduced above, the feature extraction scheme
[13] implements Gabor wavelets to extract features vectors from
multiple scales and multiple resolutions. If this scheme is imple-
mented in sensor networks, Camera will need to exchange its
extracted features with Camera to obtain the correlation de-
gree between Camera and Camera . A typical process is as
follows: Camera extracts the features of its observed image
using Gabor wavelet, and transmits its feature vectors; Camera

receives the feature vectors from Camera , and also imple-
ment the Gabor wavelet to extract the features of its own image.
Finally, the correlation of images at Camera and Camera can
be calculated by comparing their feature vectors.

The proposed scheme needs to transmit four parameters. As
each parameter needs 32 bits to present, the total bits for trans-
mission is 4 32 bits. In the feature extraction scheme [13],
features are extracted from four resolutions and six orientations,
and each feature space contains two elements. We also assume
that each element in the feature space needs 32 bits to present,
so the total bits for transmission is 4 6 2 32 bits.

According to the energy model for communications in [9], we
can calculate the energy consumption for communication be-
tween Camera and Camera . The average energy consump-
tion for communication to exploit correlation is illustrated in
Fig. 10. Fig. 10(a) is a comparison of energy consumption for
both schemes, and Fig. 10(b) is the energy consumption per
node for the proposed scheme. For both schemes, the energy
consumption per node increases as the distance between the two
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Fig. 10. Average energy consumption for communication per node.

nodes increases. But the proposed correlation model requires
much less energy for communication than the feature extraction
scheme.

It is commonly believed that communication is the most
energy consuming operation for sensors, which requires much
more energy than processing; however, due to the complexity
of processing algorithms for visual information, the energy
consumption for processing visual information is not negli-
gible. The feature extraction algorithm [13] depends on wavelet
transform that makes the energy consumption for computation
comparable to communication energy dissipation [11]. More-
over, as image processing schemes are usually implemented
in the unit of pixels, the energy consumption for processing
is proportional to the size/resolution of the observed image.
When the resolution increases, the energy consumption of the
image processing-based scheme will increase accordingly. In
contrast, the computation process for the proposed model is
very simple and straightforward, and the energy consumption
for computation will not be influenced by image resolutions.

We have evaluated the validity as well as the costs of the
proposed spatial correlation coefficient. From the above exper-
imental results, we can conclude that the proposed correlation
coefficient can effectively model the correlation characteristics
of visual information through low computation and communi-
cation costs.

B. Joint Effect of Multiple Cameras

In this section, we present a set of simulations to evaluate
the joint effect of multiple cameras and the correlation-based
camera selection algorithm. In a field of 500 m 500 m, we set
an area of interest that is located in the center of the field and
has a radius of 10 m. We randomly deploy cameras that can
observe this area of interest. Let be the number of cameras to
be selected by the sink to transmit their observed images. Sup-
pose each camera obtains one image about the area of interest.
Let denote the images observed by these

Fig. 11. Estimation of joint entropy.

cameras, and let denote the images ob-
served by the selected cameras.

Without loss of generality, we assume that the entropy of a
single image is a constant value, denoted as

. For these cameras, we can obtain a correlation
matrix as introduced in Section III. So the joint en-
tropy of and can
be estimated using Algorithm 1.

We compare the following two camera selection schemes.
1) Random Selection: Randomly select cameras out of

the cameras. For each M, repeat the experiment for 50 times.
Compute the joint entropy at each time, and take the average
value of the 50 trials as the final joint entropy.

2) Correlation-Based Selection: This is the proposed method
described in Algorithm 2. It makes use of correlation by se-
lecting a group of cameras that are least correlated with each
other, so that the amount of information from the selected cam-
eras can be maximized.

In our first experiment, we randomly deploy ten cameras in
the field , and let change from 2 to 10. The results
of both schemes are shown in Fig. 11. The value of joint entropy
increases as the number of nodes increases, which indicates that
if more cameras transmit their observed images to the sink, more
information can be gained about the area of interest at the sink.
When , all the cameras are selected to transmit their
observed images, so both schemes produce the same results. But
for to 9, the correlation-based algorithm always results
in larger joint entropy than the random selection of cameras.

According to the numerical results, when the number of se-
lected cameras are the same for these two schemes, the correla-
tion-based algorithm can increase the joint entropy by

in average (increase by 18.37% in average compared to the
random selection algorithm). It should be noted that the values
of joint entropy in our simulation are expressed as relative values
to the entropy of a single image, . We find in our experi-
ments that a typical value of is 5–6 bits/pixel for images
of 8-bits depth, so the correlation-based scheme can result in
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Fig. 12. Distortion function.

about 3 bits/pixel increase in joint entropy than the random se-
lection scheme.

Next we introduce more simulations to evaluate the distor-
tion performance of both schemes. We implement both schemes
for three different network topologies, where the total number
of cameras, , equals to 6, 10, and 15, respectively. Fig. 12
plots the distortion performance of both schemes. The distor-
tion decreases as the number of selected nodes increases. For
the same number of selected cameras , the proposed corre-
lation-based scheme results in lower distortion compared to the
random selection scheme.

From another perspective, if a certain distortion bound is re-
quired at the sink, we may need fewer cameras to transmit their
information using the correlation-based selection scheme. For
example, in Fig. 12(b), a total number of ten cameras are de-
ployed to observe an area of interest. If the sink wants to obtain
80% of the total information, the maximum distortion is 0.2. As
shown in Fig. 12(b), seven cameras are needed on average when
cameras are randomly selected, but only five cameras are needed
when the correlation-based selection scheme is used. Therefore,
given a distortion bound at the sink, the correlation-based selec-
tion scheme requires fewer cameras to report to the sink than
the random selection scheme.

VI. CONCLUSIONS AND FUTURE WORK

The correlation characteristics of visual information in
WMSNs can be exploited to design multimedia in-network
processing schemes. By studying the sensing model and de-
ployment of cameras in the network, we propose a novel spatial
correlation function to describe the degree of correlation for the
images observed by cameras with overlapped field of views.
Extentions of this work will include the study of correlation in
the temporal domain for multimedia streaming applications.

In addition, we study the joint effect of multiple correlated
cameras in WMSNs. We propose an entropy-based analytical
framework to measure the amount of information provided by
multiple cameras. We find that the joint entropy of multiple cor-
related cameras is related to the correlation degrees among the
cameras. The entropy-based framework will serve as a useful
tool for designing multimedia in-network processing schemes
in WMSNs.

A correlation-based camera selection algorithm is also in-
troduced to show how to select cameras from sensor networks
under distortion constraints. The proposed camera selection al-
gorithm aims to minimize the number of cameras to report to
the sink under distortion constraints. In our future work, we can
consider more factors for the camera selection problem, such as
the residual energy of sensors, the locations of correlated cam-
eras, the costs of communication between correlated cameras,
and the costs for encoding correlated images.
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