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INTRODUCTION

Current wireless networks are characterized by a
static spectrum allocation policy, where govern-
mental agencies assign wireless spectrum to
license holders on a long-term basis for large
geographical regions. Recently, because of the
increase in spectrum demand, this policy faces
spectrum scarcity in particular spectrum bands.
In contrast, a large portion of the assigned spec-
trum is used sporadically, leading to underuti-
lization of a significant amount of spectrum [1].
Hence, dynamic spectrum access techniques
were recently proposed to solve these spectrum
inefficiency problems.

The key enabling technology of dynamic spec-
trum access techniques is cognitive radio (CR)
technology, which provides the capability to
share the wireless channel with licensed users in
an opportunistic manner. CR networks are envi-
sioned to provide high bandwidth to mobile
users via heterogeneous wireless architectures
and dynamic spectrum access techniques. This
goal can be realized only through dynamic and
efficient spectrum management techniques. CR

networks, however, impose unique challenges
due to the high fluctuation in the available spec-
trum, as well as the diverse quality of service
(QoS) requirements of various applications.

In order to address these challenges, each CR
user in the CR network must:
• Determine which portions of the spectrum

are available
• Select the best available channel
• Coordinate access to this channel with other

users
• Vacate the channel when a licensed user is

detected [2]
These capabilities can be realized through spec-
trum management functions that address four
main challenges: spectrum sensing, spectrum deci-
sion, spectrum sharing, and spectrum mobility.

This article presents a definition, the func-
tions, and the current research challenges of
spectrum management in CR networks. More
specifically, we focus our discussion on the
development of CR networks that require no
modification in existing networks. An overview
of CR technology is provided, and the CR net-
work architecture is presented. We explain the
concept of spectrum management and the
required functionalities. Then we describe spec-
trum sensing, spectrum decision, spectrum shar-
ing, and spectrum mobility concepts.

COGNITIVE RADIO TECHNOLOGY
The key enabling technologies of CR networks
are the cognitive radio techniques that provide
the capability to share the spectrum in an oppor-
tunistic manner. Formally, a CR is defined as a
radio that can change its transmitter parameters
based on interaction with its environment [1].
From this definition, two main characteristics of
cognitive radio can be defined [3]:
• Cognitive capability: Through real-time

interaction with the radio environment, the
portions of the spectrum that are unused at
a specific time or location can be identified.
As shown in Fig. 1a, CR enables the usage
of temporally unused spectrum, referred to
as spectrum hole or white space. Conse-
quently, the best spectrum can be selected,
shared with other users, and exploited with-
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out interference with the licensed user.
• Reconfigurability: A CR can be programmed

to transmit and receive on a variety of fre-
quencies, and use different access technolo-
gies supported by its hardware design [4].
Through this capability, the best spectrum
band and the most appropriate operating
parameters can be selected and reconfig-
ured.
In order to provide these capabilities, CR

requires a novel radio frequency (RF) transceiv-
er architecture. The main components of a CR
transceiver are the radio front-end and the base-
band processing unit that were originally pro-
posed for software-defined radio (SDR), as
shown in Fig. 1b [4]. In the RF front-end the
received signal is amplified, mixed, and analog-
to-digital (A/D) converted. In the baseband pro-
cessing unit, the signal is modulated/
demodulated. Each component can be reconfig-
ured via a control bus to adapt to the time-vary-
ing RF environment. The novel characteristic of
the CR transceiver is the wideband RF front-end
that is capable of simultaneous sensing over a
wide frequency range. This functionality is relat-
ed mainly to the RF hardware technologies, such
as wideband antenna, power amplifier, and
adaptive filter. RF hardware for the CR should
be capable of being tuned to any part of a large
range of spectrum. However, because the CR
transceiver receives signals from various trans-
mitters operating at different power levels, band-
widths, and locations; the RF front-end should
have the capability to detect a weak signal in a
large dynamic range, which is a major challenge
in CR transceiver design [5].

COGNITIVE RADIO
NETWORK ARCHITECTURE

A comprehensive description of the CR network
architecture is essential for the development of
communication protocols that address the
dynamic spectrum challenges. The CR network
architecture is presented in this section.

NETWORK COMPONENTS
The components of the CR network architec-
ture, as shown in Fig. 2, can be classified as two
groups: the primary network and the CR network.
The primary network (or licensed network) is

referred to as an existing network, where the pri-
mary users have a license to operate in a certain
spectrum band. If primary networks have an
infrastructure, primary user activities are con-
trolled through primary base stations. Due to
their priority in spectrum access, the operations
of primary users should not be affected by unli-
censed users.

The CR network (also called the dynamic
spectrum access network, secondary network, or
unlicensed network) does not have a license to
operate in a desired band. Hence, additional
functionality is required for CR users to share
the licensed spectrum band. CR networks also
can be equipped with CR base stations that pro-
vide single-hop connection to CR users. Finally,
CR networks may include spectrum brokers that
play a role in distributing the spectrum resources
among different CR networks [6].

SPECTRUM HETEROGENEITY
CR users are capable of accessing both the
licensed portions of the spectrum used by prima-
ry users and the unlicensed portions of the spec-
trum through wideband access technology.
Consequently, the operation types for CR net-
works can be classified as licensed band operation
and unlicensed band operation.
• Licensed band operation: The licensed band

is primarily used by the primary network.
Hence, CR networks are focused mainly on
the detection of primary users in this case.
The channel capacity depends on the inter-
ference at nearby primary users. Further-
more, if primary users appear in the
spectrum band occupied by CR users, CR
users should vacate that spectrum band and
move to available spectrum immediately.

• Unlicensed band operation: In the absence of
primary users, CR users have the same
right to access the spectrum. Hence, sophis-
ticated spectrum sharing methods are
required for CR users to compete for the
unlicensed band.

NETWORK HETEROGENEITY
As shown in Fig. 2, the CR users have the oppor-
tunity to perform three different access types:
• CR network access: CR users can access

their own CR base station, on both licensed
and unlicensed spectrum bands. Because all
interactions occur inside the CR network,

n Figure 1. Overview of cognitive radio: a) the spectrum hole concept; b) cognitive radio transceiver architecture.
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their spectrum sharing policy can be inde-
pendent of that of the primary network.

• CR ad hoc access: CR users can communi-
cate with other CR users through an ad hoc
connection on both licensed and unlicensed
spectrum bands.

• Primary network access: CR users can also
access the primary base station through the
licensed band. Unlike for other access types,
CR users require an adaptive medium
access control (MAC) protocol, which
enables roaming over multiple primary net-
works with different access technologies.
According to the CR architecture shown in

Fig. 2, various functionalities are required to
support spectrum management in CR net-
works. An overview of the spectrum manage-
ment framework and its components is
provided next.

SPECTRUM MANAGEMENT FRAMEWORK
CR networks impose unique challenges due to
their coexistence with primary networks as well
as diverse QoS requirements. Thus, new spec-
trum management functions are required for CR
networks with the following critical design chal-
lenges:
• Interference avoidance: CR networks should

avoid interference with primary networks.
• QoS awareness: To decide on an appropri-

ate spectrum band, CR networks should
support QoS-aware communication, consid-
ering the dynamic and heterogeneous spec-
trum environment.

• Seamless communication: CR networks
should provide seamless communication

regardless of the appearance of primary
users.
To address these challenges, we provide a

directory for different functionalities required
for spectrum management in CR networks. The
spectrum management process consists of four
major steps:
• Spectrum sensing: A CR user can allocate

only an unused portion of the spectrum.
Therefore, a CR user should monitor the
available spectrum bands, capture their
information, and then detect spectrum holes.

• Spectrum decision: Based on the spectrum
availability, CR users can allocate a chan-
nel. This allocation not only depends on
spectrum availability, but is also determined
based on internal (and possibly external)
policies.

• Spectrum sharing: Because there may be
multiple CR users trying to access the spec-
trum, CR network access should be coordi-
nated to prevent multiple users colliding in
overlapping portions of the spectrum.

• Spectrum mobility: CR users are regarded as
visitors to the spectrum. Hence, if the spe-
cific portion of the spectrum in use is
required by a primary user, the communica-
tion must be continued in another vacant
portion of the spectrum.
The spectrum management framework for

CR network communication is illustrated in Fig.
3. It is evident from the significant number of
interactions that the spectrum management
functions require a cross-layer design approach.
In the following sections we discuss the four
main spectrum management functions.

n Figure 2. Cognitive radio network architecture.
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SPECTRUM SENSING

A CR is designed to be aware of and sensitive to
the changes in its surroundings, which makes
spectrum sensing an important requirement for
the realization of CR networks. Spectrum sens-
ing enables CR users to adapt to the environ-
ment by detecting spectrum holes without
causing interference to the primary network.
This can be accomplished through a real-time
wideband sensing capability to detect weak pri-
mary signals in a wide spectrum range. General-
ly, spectrum sensing techniques can be classified
into three groups: primary transmitter detection,
primary receiver detection, and interference
temperature management as described in the
following.

PRIMARY TRANSMITTER DETECTION
Transmitter detection is based on the detection
of a weak signal from a primary transmitter
through the local observations of CR users.
Three schemes are generally used for transmitter
detection: matched filter detection, energy detec-
tion, and feature detection [5]:
• Matched filter detection: When the informa-

tion of the primary user signal is known to
the CR user, the optimal detector in sta-
tionary Gaussian noise is the matched filter.
However, the matched filter requires a pri-
ori knowledge of the characteristics of the
primary user signal.

• Energy detection: If the receiver cannot gath-
er sufficient information about the primary
user signal, the optimal detector is an ener-
gy detector. However, the performance of
the energy detector is susceptible to uncer-
tainty in noise power. Also, energy detec-
tors often generate false alarms triggered
by unintended signals because they cannot
differentiate signal types.

• Feature detection: In general, modulated sig-
nals are characterized by built-in periodicity
or cyclostationarity. This feature can be
detected by analyzing a spectral correlation
function [7]. The main advantage of feature
detection is its robustness to uncertainty in
noise power. However, it is computationally
complex and requires significantly long
observation times.
Due to the lack of interactions between pri-

mary users and CR users, transmitter detection
techniques rely only on weak signals from the
primary transmitters. Hence, transmitter detec-
tion techniques alone cannot avoid interference
to primary receivers because of the lack of pri-
mary receiver information as depicted in Fig. 4a.
Moreover, transmitter detection models cannot
prevent the hidden terminal problem. A CR user
(transmitter) can have a good line of sight to a
CR receiver but may not be able to detect the
primary transmitter due to shadowing, as shown
in Fig. 4b. Therefore, sensing information from
other users is required for more accurate prima-
ry transmitter detection — referred to as cooper-
ative detection.

Cooperative detection is theoretically more
accurate because the uncertainty in a single
user’s detection can be minimized through col-
laboration [8]. Moreover, multipath fading and
shadowing effects can be mitigated so that the
detection probability is improved in a heavily
shadowed environment. However, cooperative
approaches cause adverse effects on resource-
constrained networks due to the overhead traffic
required for cooperation.

PRIMARY RECEIVER DETECTION
Although cooperative detection reduces the
probability of interference, the most efficient
way to detect spectrum holes is to detect the pri-
mary users that are receiving data within the

n Figure 3. Spectrum management framework for cognitive radio networks.
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communication range of a CR user. Usually, the
local oscillator (LO) leakage power emitted by
the RF front-end of the primary receiver is
exploited [9]. However, because the LO leakage
signal is typically weak, implementation of a reli-
able detector is not trivial. Currently, this
method is only feasible in the detection of TV
receivers.

INTERFERENCE TEMPERATURE MANAGEMENT
Traditionally, interference can be controlled at
the transmitter through the radiated power and
location of individual transmitters. However,
interference actually takes place at the receivers,
as shown in Fig. 4a. Therefore, recently a new
model for measuring interference, referred to as
interference temperature, has been introduced by
the Federal Communications Commission (FCC)
[1]. This model limits the interference at the
receiver through an interference temperature
limit, which is the amount of new interference
the receiver could tolerate. As long as CR users
do not exceed this limit, they can use the spec-
trum band. Although this model is the best fit
for the objective of spectrum sensing, the diffi-
culty of this model lies in accurately determining
the interference temperature limit.

SPECTRUM SENSING CHALLENGES
There exist several open research challenges that
must be investigated for the development of
spectrum sensing techniques:
• Interference temperature measurement: Due

to the lack of interactions between primary
networks and CR networks, generally a CR
user cannot be aware of the precise loca-
tions of the primary receivers. Thus, new
techniques are required to measure or esti-
mate the interference temperature at near-
by primary receivers.

• Spectrum sensing in multi-user networks: The
multi-user environment, consisting of multi-
ple CR users and primary users, makes it
more difficult to sense spectrum holes and
estimate interference. Hence, spectrum
sensing functions should be developed con-
sidering the multi-user environment.

• Spectrum-efficient sensing: Sensing cannot be
performed while transmitting packets.
Hence, CR users should stop transmitting
while sensing, which decreases spectrum
efficiency. For this reason, balancing spec-
trum efficiency and sensing accuracy is an
important issue. Moreover, because sensing
time directly affects transmission perfor-
mance, novel spectrum sensing algorithms
must be developed such that the sensing
time is minimized within a given sensing
accuracy.

SPECTRUM DECISION
CR networks require the capability to decide

which is the best spectrum band among the
available bands according to the QoS require-
ments of the applications. This notion is called
spectrum decision and constitutes a rather impor-
tant but as yet unexplored topic in CR networks.

Spectrum decision is closely related to the
channel characteristics and operations of prima-
ry users. Furthermore, spectrum decision is
affected by the activities of other CR users in
the network. Spectrum decision usually consists
of two steps: first, each spectrum band is charac-
terized, based on not only local observations of
CR users but also statistical information of pri-
mary networks. Then, based on this characteriza-
tion, the most appropriate spectrum band can be
chosen. In the following we investigate the chan-
nel characteristics, decision procedures, and
research challenges in CR networks.

CHANNEL CHARACTERISTICS IN
COGNITIVE RADIO NETWORKS

Because available spectrum holes show different
characteristics that vary over time, each spec-
trum hole should be characterized considering
both the time-varying radio environment and
spectrum parameters, such as operating frequen-
cy and bandwidth. Hence, it is essential to define
parameters that can represent a particular spec-
trum band as follows:
• Interference: From the amount of interfer-

n Figure 4. Transmitter detection problem: a) receiver uncertainty; b) shadowing uncertainty.
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ence at the primary receiver, the permissi-
ble power of a CR user can be derived,
which is used for the estimation of channel
capacity.

• Path loss: The path loss is closely related to
distance and frequency. As the operating
frequency increases, the path loss increases,
which results in a decrease in the transmis-
sion range. If transmission power is
increased to compensate for the increased
path loss, interference at other users may
increase.

• Wireless link errors: Depending on the mod-
ulation scheme and the interference level of
the spectrum band, the error rate of the
channel changes.

• Link layer delay: To address different path
loss, wireless link error, and interference,
different types of link layer protocols are
required at different spectrum bands. This
results in different link layer delays. It is
desirable to identify the spectrum bands
that combine all the characterization
parameters described previously for accu-
rate spectrum decision. However, a com-
plete analysis and modeling of spectrum in
CR networks has not been developed yet.

DECISION PROCEDURE
After the available spectrum bands are charac-
terized, the most appropriate spectrum band
should be selected, considering the QoS require-
ments and spectrum characteristics. Accordingly,
the transmission mode and bandwidth for the
transmission can be reconfigured.

To describe the dynamic nature of CR net-
works, a new metric — primary user activity — is
proposed [10], which is defined as the probabili-
ty of a primary user appearance during CR user
transmission. Because there is no guarantee that
a spectrum band will be available during the
entire communication of a CR user, it is impor-
tant to consider how often the primary user
appears on the spectrum band.

However, because of the operation of prima-
ry networks, CR users cannot obtain a reliable
communication channel for a long time period.
Moreover, CR users may not detect any single
spectrum band to meet the user’s requirements.
Therefore, multiple noncontiguous spectrum
bands can be simultaneously used for transmis-

sion in CR networks, as shown in Fig. 5. This
method can create a signal that is not only capa-
ble of high data throughput, but is also immune
to interference and primary user activity. Even if
spectrum handoff occurs in one of the current
spectrum bands, the rest of the spectrum bands
will maintain current transmissions.

SPECTRUM DECISION CHALLENGES
In the development of the spectrum decision
function, several challenges still remain unsolved:
• Decision model: Spectrum capacity estima-

tion using signal-to-noise ratio (SNR) is not
sufficient to characterize the spectrum band
in CR networks. Also, applications require
different QoS requirements. Thus, design
of application- and spectrum-adaptive spec-
trum decision models is still an open issue.

• Cooperation with reconfiguration: CR tech-
niques enable transmission parameters to be
reconfigured for optimal operation in a cer-
tain spectrum band. For example, even if
SNR is changed, bit rate and bit error rate
(BER) can be maintained by exploiting adap-
tive modulation instead of spectrum decision.
Hence, a cooperative framework with recon-
figuration is required in spectrum decision.

• Spectrum decision over heterogeneous spec-
trum bands: Currently, certain spectrum
bands are assigned to different purposes,
whereas some bands remain unlicensed.
Thus, a CR network should support spec-
trum decision operations on both the
licensed and unlicensed bands.

SPECTRUM SHARING
The shared nature of the wireless channel
requires the coordination of transmission
attempts between CR users. In this respect,
spectrum sharing should include much of the
functionality of a MAC protocol. Moreover, the
unique characteristics of CRs, such as the coexis-
tence of CR users with licensed users and the
wide range of available spectrum, incur substan-
tially different challenges for spectrum sharing in
CR networks. The existing work in spectrum
sharing aims to address these challenges and can
be classified by four aspects: the architecture,
spectrum allocation behavior, spectrum access
technique, and scope.

n Figure 5. Channel structure of the multi-spectrum decision.
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The first classification is based on the archi-
tecture, which can be centralized or distributed:
• Centralized spectrum sharing: The spectrum

allocation and access procedures are con-
trolled by a central entity. Moreover, a dis-
tributed sensing procedure can be used
such that measurements of the spectrum
allocation are forwarded to the central enti-
ty, and a spectrum allocation map is con-
structed. Furthermore, the central entity
can lease spectrum to users in a limited
geographical region for a specific amount
of time. In addition to competition for the
spectrum, competition for users can also be
considered through a central spectrum poli-
cy server [6].

• Distributed spectrum sharing: Spectrum allo-
cation and access are based on local (or
possibly global) policies that are performed
by each node distributively [11]. Distributed
solutions also are used between different
networks such that a base station (BS) com-
petes with its interferer BSs according to
the QoS requirements of its users to allo-
cate a portion of the spectrum.
The recent work on comparison of central-

ized and distributed solutions reveals that dis-
tributed solutions generally closely follow the
centralized solutions, but at the cost of message
exchanges between nodes [12].

The second classification is based on alloca-
tion behavior, where spectrum access can be
cooperative or noncooperative.
• Cooperative spectrum sharing: Cooperative

(or collaborative) solutions exploit the
interference measurements of each node
such that the effect of the communication
of one node on other nodes is considered.
A common technique used in these schemes
is forming clusters to share interference
information locally. This localized opera-
tion provides an effective balance between
a fully centralized and a distributed scheme.

• Non-cooperative spectrum sharing: Only a sin-
gle node is considered in non-cooperative
(or non-collaborative, selfish) solutions [13].
Because interference in other CR nodes is
not considered, non-cooperative solutions
may result in reduced spectrum utilization.
However, these solutions do not require fre-
quent message exchanges between neigh-
bors as in cooperative solutions.

Cooperative approaches generally outperform
noncooperative approaches, as well as closely
approximating the global optimum [12]. More-
over, cooperative techniques result in a certain
degree of fairness, as well as improved through-
put. On the other hand, the performance degra-
dation of non-cooperative approaches are
generally offset by the significantly low informa-
tion exchange and hence, energy consumption.

The third classification for spectrum sharing
in CR networks is based on the access technolo-
gy [14]:
• Overlay spectrum sharing: Nodes access the

network using a portion of the spectrum
that has not been used by licensed users.
This minimizes interference to the primary
network.

• Underlay spectrum sharing: The spread spec-
trum techniques are exploited such that the
transmission of a CR node is regarded as
noise by licensed users.
Underlay techniques can utilize higher band-

width at the cost of a slight increase in complexi-
ty. Considering this trade-off, hybrid techniques
can be considered for the spectrum access tech-
nology for CR networks. Finally, spectrum shar-
ing techniques are generally focused on two types
of solutions: spectrum sharing inside a CR net-
work (intranetwork spectrum sharing) and among
multiple coexisting CR networks (internetwork
spectrum sharing), as explained in the following:
• Intranetwork spectrum sharing: These solu-

tions focus on spectrum allocation between
the entities of a CR network, as shown in
Fig. 6. Accordingly, the users of a CR net-
work try to access the available spectrum
without causing interference to the primary
users. Intranetwork spectrum sharing poses
unique challenges that have not been con-
sidered previously in wireless communica-
tion systems.

• Internetwork spectrum sharing: The CR
architecture enables multiple systems to be
deployed in overlapping locations and spec-
trum, as shown in Fig. 6. So far the inter-
network spectrum sharing solutions provide
a broader view of the spectrum sharing con-
cept by including certain operator policies.
Next, we describe the potential challenges

and open research issues of this aspect.

SPECTRUM SHARING CHALLENGES
There are many open research issues for the
realization of efficient and seamless open spec-
trum operation in CR networks, such as:
• Common control channel: A common con-

trol channel (CCC) facilitates many spec-
trum sharing functionalities. However,
because a channel must be vacated when a
primary user chooses a channel, implemen-
tation of a fixed CCC is infeasible. More-
over, in CR networks a channel common to
all users is highly dependent on topology
and varies over time [15]. Consequently,
either CCC mitigation techniques must be
devised or local CCCs must be exploited
for clusters of nodes.

• Dynamic radio range: Due to the interde-
pendency between radio range and operat-
ing frequency, the neighbors of a node may

n Figure 6. Inter-network and intra-network spectrum sharing in CR networks. 
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change as the operating frequency changes.
So far, there is no work addressing this
important challenge in CR networks, and
we advocate frequency-aware spectrum
sharing techniques.

• Spectrum unit: Almost all spectrum decision
and sharing techniques consider a channel
as the basic spectrum unit. Hence, the defi-
nition of a channel as a spectrum unit is
crucial in developing algorithms.

• Location information: An important assump-
tion in the existing work is that secondary
users know the location and transmit power
of primary users so that interference calcu-
lations can be performed easily. However,
such an assumption may not always be valid
in CR networks.

SPECTRUM MOBILITY
The fourth step of spectrum management, as
explained earlier, is spectrum mobility manage-
ment. After a CR captures the best available
spectrum, primary user activity on the selected
spectrum may necessitate that the user change
its operating spectrum band(s), which is referred
to as spectrum mobility. Spectrum mobility gives
rise to a new type of handoff in CR networks,
spectrum handoff. Protocols for different layers
of the network stack must adapt to the channel
parameters of the operating frequency. More-
over, they should be transparent to spectrum
handoff and the associated latency.

Each time a CR user changes its frequency of
operation, the network protocols may require
modifications to the operation parameters. The
purpose of the spectrum mobility management
in CR networks is to ensure smooth and fast
transition leading to minimum performance
degradation during a spectrum handoff. An
important requirement of mobility management
protocols is information about the duration of a
spectrum handoff. This information can be pro-
vided by the sensing algorithm. After the latency
information is available, the ongoing communi-
cations can be preserved with only minimum
performance degradation.

The intrinsic characteristics of a CR network
give rise to two novel concepts: spectrum mobili-
ty and spectrum handoff. So far, there is no
research effort to address the problems of spec-
trum handoff. Although the mobility-based
handoff mechanisms that have been investigated
in cellular networks may lay the groundwork in
this area, there are still open research topics to
be investigated.

SPECTRUM MOBILITY CHALLENGES
The following are the open research issues for
efficient spectrum mobility in CR networks:
• Spectrum mobility in the time domain: CR

networks adapt to the wireless spectrum
based on the available bands. Because these
available channels change over time,
enabling QoS in this environment is chal-
lenging.

• Spectrum mobility in space: The available
bands also change as a user moves from
one place to another. Hence, continuous
allocation of spectrum is a major challenge.

CONCLUSION

By exploiting the existing wireless spectrum
opportunistically, CR networks are being devel-
oped to solve current wireless network problems
resulting from the limited available spectrum
and the inefficiency in spectrum usage. CR net-
works, equipped with the intrinsic capabilities of
cognitive radio, will provide an ultimate spec-
trum-aware communication paradigm in wireless
communications. In this survey intrinsic proper-
ties and current research challenges of spectrum
management in CR networks are presented. In
particular, we investigate novel spectrum man-
agement functionalities such as spectrum sens-
ing, spectrum decision, spectrum sharing, and
spectrum mobility. Many researchers are cur-
rently engaged in developing the communication
technologies and protocols required for CR net-
works. However, to ensure efficient spectrum-
aware communication, more research is required
along the lines introduced in this survey.
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