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Abstract— The lifetime of a wireless sensor network (WSN) is
generally limited by the battery lifetime of the sensor nodes. In this
respect, efficient monitoring of the entire network’s available energy
is of great importance to take appropriate preventive actions.
However, the physical limitations of WSNs, such as limited memory
and energy resources, mandate such a monitoring mechanism to
have low complexity and minimum energy dissipation. In this paper,
a forecasting-based monitoring and tomography (FMT) framework
is presented for WSNs. The objective of the FMT framework is to
achieve overall monitoring and to capture the tomography of the
available energy in WSNs with minimum energy expenditure. To
reduce the amount of energy consumed for monitoring purposes,
the FMT framework incorporates available energy forecasting
and network aggregation mechanisms. Comparative performance
evaluations show that the FMT framework achieves accurate energy
monitoring and obtains the network energy tomography of large
scale WSNs with minimum energy consumption.

Index Terms— Wireless Sensor Networks, Network Management,
Available Energy Monitoring, Network Energy Tomography.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have significant resource
constraints, such as limited memory and energy sources. Due
to the large scale of the network, it is impractical, or even
impossible, to replace or recharge the batteries of the individ-
ual sensor nodes. The limited resources in WSNs should be
efficiently utilized to increase the lifetime of the network. In
this regard, the main objective of all communication protocols
proposed for WSNs is to minimize energy consumption while
performing their specific tasks [2]. Although these protocols
prolong network lifetime to a certain extent, it is inevitable that
the sensor network will be nonfunctional because of several
problems originated by energy depletion of the sensor nodes.
Hence, the overall energy resources in WSNs must be effectively
monitored and managed to further prolong the network lifetime
and to enable the realization of possible precautions such as
reconfiguration of the network and incremental sensor node
deployment.

However, the management of sensor networks is a challenging
task due to their unique characteristics. First, unlike other dis-
tributed systems, sensor networks are typically limited by energy
sources, communication bandwidth and computational power.
Second, the large number of sensor nodes makes it infeasible
to collect detailed status information from individual sensor
nodes. Third, the working environment of the sensor nodes
can be inaccessible for humans, e.g., consider the scenarios
where sensors scattered in a battlefield or over a very high

altitude region. All these challenges in WSNs make the use and
throw approach very attractive [6]. In this approach, the sensors
that either have run out of battery or have failed are simply
discarded and more sensors are thrown to compensate for the
weak sensor nodes. Another solution to the problem of failed
regions in WSNs is that the network can reconfigure and adapt
itself dynamically in such a way that a new routing topology
around the failed regions is constructed to maintain the network
connectivity throughout the sensor field. On the other hand, such
a compensation method or reconfiguration algorithm require an
energy efficient monitoring mechanism for WSNs.

Therefore, given their specific characteristics and unattended
nature, it is essential that the sensor nodes have to be closely
monitored by some remote controller, e.g., the sink or the
monitoring node, which should be informed about the current
state of the sensor nodes in terms of available energy resources.
In other words, even when no anomalies in WSNs exist, the
monitoring node must be sure whether the sensor nodes are
alive and functional. This is because if a region of the sensor
network fails, then the sensor network cannot perform its col-
laborative sensing task. For example, in a battlefield application,
a perimeter defense system may no longer be able to detect
breaches of the perimeter in case a part of the network fails.
In addition, if the monitoring node is not aware of this network
partition, then a security breach might have occurred. Especially
for military applications, unexpected and unpredictable failures
in WSNs are unacceptable, since these failures make the sensor
network unreliable. It is therefore critical for the monitoring node
to control whether the network connectivity is maintained or not.

This monitoring and control process can also be useful for
forecasting network failures so that preventive action is taken in
a timely manner. In this respect, monitoring of available energy
or activity in the sensor field is required to determine the failed
areas in the network. The available energy distribution at differ-
ent parts of the network can be represented properly by network
energy tomography maps, which is an analogy to the medical
tomography method of imaging the internals of the human body.
These energy tomography maps depict a complete picture of the
remaining energy levels in the sensor network. We can illustrate
the energy map of a sensor network as a shaded color surface
image, in which the cavities in the surface represent critical
regions with scarce energy. Using the simulation environment
described in Section IV, the energy distribution of a typical
sensor network is obtained and its associated available energy
map is depicted in Fig. 1. This case study clearly illustrates that
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Fig. 1. Available energy distribution where 200 sensor nodes are randomly
distributed on a 200m by 200m square plane. The monitoring node is randomly
selected and located at position (X, Y)=(69.47, 43.25).

the sensor nodes around the monitoring node and the source
nodes that detect event features consume much higher energy
than the other nodes in the network. Especially, the residual
energy of sensor nodes around the monitoring node decreases
rapidly, since they are used more frequently to relay the packets
to the monitoring node.

The nonuniform energy distribution within the entire sensor
network may lead to network partitioning. The available energy
maps can be used to identify whether any region of the network
is about to lose the network connectivity in the near future due
to depleted energy. The information of low-energy regions can
also aid in incremental deployment of sensor nodes to those
energy scarce regions [2]. Moreover, the optimal place for the
monitoring node can be found by means of the available energy
maps. In other words, if the monitoring node is moved to the
network regions with more remaining energy, the lifetime of the
network can be further increased.

In summary, the potential gains of deploying energy man-
agement and forecasting scheme in WSNs can be outlined as
follows:

• Network management and load balancing: The energy
management and forecasting scheme can provide guidance
to prolong network lifetime by early warnings of system
failure, hence such an energy management forecasting
scheme may work in harmony with energy efficient con-
gestion control protocols such as [1]. For example, the
reporting rate of sensor nodes can be decreased in energy
scarce regions identified by the energy management and
forecasting scheme.

• Network reliability and forecasting network behavior: The
dynamic network behavior can be captured effectively by
the energy management and forecasting scheme. This can
be useful for predicting network failures and taking pre-
ventive actions accordingly. This way, the reliability of the
network can be maintained within dynamic sensor network
environment.

• Future deployment: In WSNs, sensors are typically de-
ployed in a random fashion with no prior knowledge of
the target area. The forecasting model can identify energy
constrained regions and future deployment of sensor nodes
can be performed properly to provide network connectivity.

• Optimal placement of the monitoring node: The sensor

nodes around the monitoring node are likely to consume
more energy, since they are used more frequently to relay
the packets to the monitoring node. Thus, the monitoring
node can be moved to the network parts with more remain-
ing energy, so that the lifetime of the network is increased.

All these potential gains imply that the available energy map
of the sensor network is of great importance for the optimal
organization and management of the network. However, contin-
uous monitoring process in such energy constrained networks
is challenging. Especially if the monitoring is done frequently,
the status updates can cause high communication costs resulting
in an extra energy burden. On the other hand, without updated
data, inaccurate network management decisions can be made.
Therefore, there is a tradeoff between accuracy and energy
efficiency in the monitoring process.

In this paper, to address the issues introduced above, we
present the forecasting-based monitoring and tomography (FMT)
framework for WSNs. The objective of the FMT framework is to
achieve overall monitoring and to capture the tomography of the
available energy in WSN with minimum energy expenditure. To
reduce the amount of energy consumed for monitoring purposes,
the FMT framework incorporates available energy forecasting
and network aggregation mechanisms. The comparative perfor-
mance evaluations show that the FMT framework achieves accu-
rate energy monitoring and obtains network energy tomography
of large scale WSNs with minimum energy consumption.

The remainder of the paper is organized as follows. In Section
II, we explore the existing work on the monitoring mechanisms
of the available energy in WSNs. In Section III, we describe the
forecasting-based monitoring and tomography (FMT) framework
for WSNs in detail. In Section IV, the comparative performance
evaluations and simulation results of the FMT framework are
presented. Finally, the paper is concluded in Section V.

II. RELATED WORK

The problem of monitoring sensor networks is of great sig-
nificance to prolong the network lifetime and to maintain the
network connectivity [20]. Recently, different algorithms are
proposed to discover failed sensor nodes [3],[21], to compute
the coverage and exposure bounds of sensor networks [12],[13]
and to provide topological mapping of the network [4]. These
approaches detect one or more specific network failures in re-
source constrained WSNs. Our work is complimentary, enabling
early system failure warnings to invoke these other monitoring
and diagnostics tools.

As far as energy monitoring in WSNs is concerned, in
[24], the authors propose to obtain approximate residual energy
variation of the network by using an aggregation based approach,
called Residual Scan. In Residual Scan, the significant energy
savings are achieved utilizing network aggregation. However, the
aggregated data in the monitoring node is actually a delayed view
of the sensor network [24]. In order to obtain an updated energy
information in the monitoring node, the status update frequency
must be high, which may cause congestion and extra energy
burden in the network. In [17], the authors present a model, in
which each sensor node tries to predict its energy consumption
by using discrete time Markov chains. Although the predicted
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energy consumption of each sensor node decreases the number of
energy packets sent in the network, the transmission of predicted
energy packets from all sensor nodes to the monitoring node
results in significant energy consumption and congestion in
energy and bandwidth scarce WSNs.

In our work, to continuously update the energy information
with minimum energy expenditure, each sensor node sends not
only its available energy, but also its forecasted energy dissipa-
tion rate to the monitoring node. This way, energy information
is transmitted to the monitoring node only when there is a
variation in the network behavior, which significantly decreases
the amount of energy consumed for monitoring purposes. In
addition, instead of collecting the raw energy information from
individual nodes, we apply energy forecasting and network
aggregation mechanisms together in order to further reduce the
monitoring costs in the network. This combined forecasting and
network aggregation mechanism distinguishes our work from
existing energy monitoring solutions.

III. FMT: THE FORECASTING-BASED MONITORING AND

TOMOGRAPHY FRAMEWORK

A. Network Model

In the FMT framework, N sensor nodes are randomly dis-
tributed on a 2-D plane and the monitoring node, where all
source data is gathered, is randomly located. In our study, each
sensor node is static and can communicate with other nodes
within its communication range. In addition, we assume that
each sensor node is aware of its position on a 2-D plane through
GPS (Global Positioning System) or other location determination
techniques [8],[10]. Sensor nodes are powered by batteries with
normalized capacity of 100% and they can measure its available
energy using smart battery monitor components [5]. Each sensor
can perform one or more sensing tasks in the deployment field.

Moreover, we ignore the processing cost in our model, since
the processing cost is much lower than the communication
cost. This is justified by experimental results on sensor network
prototypes such as [19], where the energy necessary to transmit 1
kbit is shown to be equivalent to the energy necessary to execute
300,000 processor instructions. This energy tradeoff between
communication and data processing implies that data processing
inside the network, instead of simply transmitting the raw sensor
data to the monitoring node, can efficiently be exploited to
reduce the amount of energy consumed for monitoring purposes.

B. Available Energy Forecasting

The available energy forecasting method allows energy infor-
mation to be communicated to the monitoring node only when
there is a variation in the network behavior. This significantly
reduces the amount of energy consumed for monitoring pur-
poses. The key feature of the proposed forecasting method is
its mathematical simplicity and thus, it is easily applicable in
computational power constrained sensor nodes. Furthermore, this
method imposes small memory requirements to the network,
which is also extremely crucial for WSNs, since the memory
is another limited resource in WSNs.

The motivation of forecasting available energy is that if the
sensor node can forecast its energy dissipation rate and send

this information to the monitoring node, then there is no need
to send its energy information to the monitoring node, while
the forecast of its available energy approximately represents the
current energy of the sensor node. Hence, using the forecasted
energy dissipation rate and received available energy value, the
monitoring node can continuously make an estimation of the
residual energy of the sensor node with low energy consumption.

To make accurate forecasting of the available energy distri-
bution within the sensor network, it is necessary to remove the
effects of obsolete data in some manner. The proper approach
is to make an estimation by using only the last portion of the
data, e.g., the last τ samples, and to give relatively more weights
to the recent observations than the older observations [23]. In
this regard, what we would like to accomplish is an efficient
forecasting method that would apply the most weight to the most
recent observed available energy values and accurately forecast
the available energy in WSNs.

The proposed available energy forecasting method, i.e., Single
Parameter Double Exponential Smoothing, of the FMT frame-
work is an appropriate forecasting technique that satisfies all
these requirements mentioned above [9],[15]. The details of
Single Parameter Double Exponential Smoothing are presented
in the following section.

1) Single Parameter Double Exponential Smoothing: This
method is an efficient forecasting technique for the observed data
exhibiting a trend pattern, e.g., a consistent decrease. Hence, it
is an appropriate method so as to forecast the WSN’s available
energy, which continuously decreases after the deployment of
the sensors to the field. In addition to its appropriateness for
the observed data exhibiting a trend pattern, this technique
requires little storage and few computations, which is extremely
important for resource constrained WSNs [15].

In this study, our objective is to obtain the available energy
forecast of the sensor node by utilizing its observed available
energy value, Et. The general equations used in implementing
Single Parameter Double Exponential Smoothing are as follows:

St = αEt + (1 − α)St−1 (1)

S′
t = αSt + (1 − α)S′

t−1 (2)

where α ∈ (0, 1] is the smoothing constant and Et, St, S′
t

represent the available energy, single smoothed and double
smoothed values at time t ∈ {0, 1, 2, ...}, respectively.

In this technique, the initial values of St and S′
t are set to the

value of the first observed energy value, E0, [15]. Moreover, this
technique makes additional adjustments to accordingly forecast
the trend pattern in the observed data. In order to make these
adjustments, we define the following auxiliary terms:

at = St + (St − S′
t) = 2St − S′

t (3)

bt =
α

(1 − α)
(St − S′

t) (4)

Using the auxiliary terms a
t

and b
t
, we can express the
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Algorithm 1 Available Energy Forecasting
Pseudocode of Available Energy Forecasting
begin
// Sensor node
Dt = Ft+τ−Et

τ

if (
∣∣∣Dt−Dt−τ

Dt−τ

∣∣∣ ≥ ∆) then
send (Et,Dt)

end if
// Monitoring node
UpdateEnergyMap()
end

available energy forecast as follows:

Ft+τ = at + btτ (5)

where Ft+τ represents the available energy forecast value for
time t + τ , which is calculated by the sensor at time t, and τ
stands for the length of the forecast interval, which is specific
to the application requirements.

After calculating its available energy forecast using eqn. (5),
each sensor node computes its forecasted energy dissipation rate,
Dt = Ft+τ−Et

τ , and sends it to the monitoring node. Note that
before sending its dissipation rate to the monitoring node, each
sensor compares its previous forecasted dissipation rate, Dt−τ ,
with the newly calculated one, Dt. If the normalized difference,∣∣∣Dt−Dt−τ

Dt−τ

∣∣∣, is not higher than a certain threshold, ∆, it does
not send the newly calculated dissipation rate to the monitoring
node in order to save limited energy in the network.

Then, using the energy dissipation rate, Dt, and the received
available energy value, Et, the monitoring node continuously
updates residual energy of the sensor nodes. The pseudocode of
available energy forecasting is given in Algorithm 1.

C. Network Aggregation Mechanism

Although available energy forecasting method achieves sig-
nificant reduction in the monitoring costs, the large number of
sensor nodes and limited energy resources make it infeasible to
collect energy information from each individual sensor node. For
this reason, the FMT framework constructs aggregated views of
the remaining energy levels in the deployment field. This way,
the communication costs are further reduced, while achieving
acceptable levels of accuracy in estimating residual energy of the
sensors. In Section IV, we show the trade-offs between reduced
accuracy and energy savings.

In fact, the network aggregation mechanism exploits the fact
that the energy dissipation of the sensors in WSNs is spatially
correlated. In other words, the nodes within a certain neigh-
borhood detect the similar events and thus, dissipating similar
energy to perform the sensing task [22]. Hence, due to spatial
correlation, available energy knowledge from spatially separated
sensors is more useful for the monitoring node than highly
correlated information from the nodes in close proximity.

In this respect, the sensor nodes that receive two or more
available energy information can aggregate the received in-
formation, if the received available energy levels are similar

and the locations of the sensors are topologically adjacent
within a certain resolution. More specifically, we can define
aggregated view of the remaining energy level as a collection
of (RECORD,GROUP ) tuples:

Definition 1: RECORD is the quantitative representation of
the energy information. It may have a more complex form than
a single scalar value [14]. In the FMT framework, we use
RECORD = (Eavg,Davg, Nnode), where Eavg,Davg, Nnode

are the average available energy, the average forecasted energy
dissipation rate, and the number of nodes, respectively.

Definition 2: GROUP denotes the set of nodes in the sensor
field that has similar energy information. In the FMT framework,
the sensor nodes are represented by their locations and the
GROUP describes the region, which covers adjacent nodes with
similar energy levels. Note that the GROUP region can also be
represented by a polygon [24], whose vertices are the locations
of the boundary nodes.

Initially, each sensor calculates its forecasted energy dissi-
pation rate (see Section III-B) and sends it to its forwarding
node towards the monitoring node. Along the aggregation path,
if a node receives two or more energy information, it will try
to aggregate those into a composite one. For example, energy
information X and Y can be aggregated, if X.RECORD and
Y.RECORD are similar and X.GROUP and Y.GROUP are
adjacent. These conditions can be defined as follows:

i. X.RECORD and Y.RECORD are similar if:

|X.Eavg−Y.Eavg|
min(X.Eavg,Y.Eavg) ≤ ∆ and |X.Davg−Y.Davg|

min(X.Davg,Y.Davg) ≤ ∆

where ∆ denotes the maximum relative error of remaining
energy information allowed by aggregation.

ii. X.GROUP and Y.GROUP are adjacent if:

Dist((X.GROUP)CM , (Y.GROUP)CM ) ≤ β

where β represents the resolution used in
determining whether two groups are adjacent and
Dist((X.GROUP )CM , (Y.GROUP)CM ) gives the
distance between the center of masses [7] of X.GROUP
and Y.GROUP , respectively.

If both conditions are met, the aggregated energy information
Z will be in the form of:

Z.Eavg = X.Eavg∗X.Nnode+Y.Eavg∗Y.Nnode

X.Nnode+Y.Nnode

Z.Davg = X.Davg∗X.Nnode+Y.Davg∗Y.Nnode

X.Nnode+Y.Nnode

Z.Nnode = X.Nnode + Y.Nnode

Z.GROUP = merge(X.GROUP , Y.GROUP )

where merge(X.GROUP, Y.GROUP ) combines two
GROUPS, if they are adjacent according to condition (ii).
Note that ∆ and β controls the aggregation level in the network
and thus, determines the accuracy of the aggregated view of
the energy information. In the FMT framework, we select β
as radio communication range and compare the performance
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of the FMT framework with various values of ∆ (see Section
IV-B).

IV. PERFORMANCE EVALUATION

In this section, the performance of FMT framework for WSNs
is evaluated. In order to investigate the performance of the FMT
framework, extensive simulation experiments are conducted un-
der varying number of sensor nodes. We also compare the
performance of the FMT framework with Residual Scan [24]
using the following performance metrics:

• Energy Cost Ratio (R = E0
Ec

): is the ratio of total energy
consumption without any in-network processing (E0) over
that of with in-network processing (Ec). Energy cost ra-
tio represents the energy savings achieved by in-network
processing. The larger the energy cost ratio, the higher the
energy saving is.

• Distortion (D): is the average distortion achieved at the
monitoring node according to the received energy informa-
tion. The distortion is calculated by the relative mean square
error between received energy information and the actual
values:

D =

√∑N
i=1(

Ei−Êi

Êi
)2

N

where Ei, Êi, N are the estimated remaining energy of
node i, the actual available energy of node i and the number
of nodes in the network, respectively.

A. Simulation Environment

To evaluate the performance of the FMT framework, we
developed an evaluation environment using ns-2 [18]. In the
simulations, we used CSMA/CA based MAC layer protocol
and directed-diffusion [11] as a routing protocol. In addition,
sensor nodes were randomly distributed on a 200m by 200m
square plane and the monitoring node, where all energy data was
gathered, was located on the bottom-left corner of the deploy-
ment field. Sensor node parameters such as energy consumption
rates and radio range were carefully chosen to mirror typical
sensor mote values [16]. Event centers (Xev, Yev) were randomly
chosen and all sensor nodes within the event radius behave as
source nodes for that event. Event radius was randomly selected
between event radius minimum and event radius maximum
values throughout the simulations. Event duration was also
randomly chosen between event duration minimum and event
duration maximum values. The duration of each simulation is
1000 sec. In Table I, the default parameters of the simulations
are shown. Unless specified otherwise, these values were used as
the parameters in the simulations. For each simulation, we run
20 experiments and take the average of the measured values.

B. Results

In Fig. 2 (a), the energy savings achieved by the FMT
framework is compared with Residual Scan scheme [24] under
varying number of sensor nodes. Recall that the Residual Scan
scheme obtains approximate energy variation of the network by

TABLE I

NS-2 SIMULATION PARAMETERS

Area of sensor field 200x200 m2

Radio range of a sensor node 30 m
Packet length 30 bytes

IFQ length 65 packets
Transmit Power 95 mW
Receive Power 55 mW

Idle Power 25 mW
Event radius (min, max) (20 m, 60 m)

Event duration (min, max) (10 sec, 60 sec)
Smoothing constant (α) 0.05

Forecast interval (τ ) 10 sec

using an aggregation based approach. On the other hand, the
FMT framework exploits the idea of both energy forecasting
and network aggregation to find an updated energy information
in the network. As shown in Fig. 2 (a), the FMT framework
outperforms the Residual Scan scheme for varying number of
sensor nodes. This is because in addition to network aggregation,
available energy forecasting mechanism of the FMT framework
allows energy information to be communicated to the monitoring
node only when there is a variation in the network behavior.
This significantly reduces the amount of energy consumed for
monitoring purposes. For example, for a threshold percentage
value equal to 5% and 400 sensor nodes, the energy savings
achieved by the FMT framework is approximately 20% and 14
times higher than that of Residual Scan scheme and centralized
scheme with no in-network processing, respectively. Note that
given a fixed threshold value, the energy cost ratio for the FMT
framework increases with increasing number of sensor nodes.
This indicates that collection of energy information with energy
forecasting and network aggregation has better scalability than
centralized energy information collection with no in-network
processing. This result confirms our main design principle that
given limited network resources, one can efficiently exploit in-
network processing instead of simply transmitting the raw sensor
data to the monitoring node. This way, the amount of energy
consumed for monitoring purposes is significantly reduced.

In Fig. 2 (b), we also show the distortion experienced by the
FMT framework and the Residual Scan scheme under varying
sensor nodes. As shown in Fig. 2 (b), the distortion level
introduced by the FMT framework is always lower than that
of the Residual Scan Scheme. For example, for a threshold
percentage value equal to 25% and 300 sensor nodes, the
distortion introduced by the FMT framework is approximately
25% lower than that of Residual Scan scheme. Moreover, we
can clearly observe the tradeoffs between energy savings and
the accuracy levels using Figs. 2 (a) and (b). For example, for a
threshold percentage value equal to 25% and 500 sensor nodes,
the FMT framework can save energy costs by a factor of 22, but
only introduces 10% distortion.

In Fig. 2 (c) and (d), we compare the FMT framework
with the Residual Scan scheme [24] under varying aggregation
threshold values. As shown in Fig. 2 (c), the energy savings
achieved by the FMT framework and the Residual Scan scheme
increases sharply for increasing threshold values. However, as
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Fig. 2. (a) Energy savings achieved under varying number of nodes, (b) Distortion values for varying number of nodes, (c) Energy savings achieved under varying
threshold values, (d) Distortion values for varying threshold values.

the aggregation threshold values increase, the energy cost ratio of
the FMT framework and the Residual Scan scheme converge to
21 and 19, respectively. Note that the energy savings achieved by
the FMT framework is always higher than those of the Residual
Scan scheme. Fig. 2 (d) shows the distortion experienced by the
FMT framework and the Residual Scan scheme under varying
threshold values. As shown in Fig. 2 (d), the distortion level
introduced by the FMT framework is always lower than that
of the Residual Scan Scheme. For example, for a threshold
percentage value equal to 15% and 400 sensor nodes, the
distortion introduced by the FMT framework is approximately
30% lower than that of Residual Scan scheme.

V. CONCLUSION

Effective operation of wireless sensor networks requires
knowledge of the current status of sensor nodes, since the
lifetime of a sensor network is generally limited by the battery
lifetime of the sensor nodes. Therefore, efficient monitoring
of the entire network’s available energy is important so that
appropriate preventive actions can be taken. The key constraints
of monitoring mechanisms for energy scarce WSNs include
low complexity and minimum energy dissipation. In this paper,
a new forecasting-based monitoring and tomography (FMT)
framework is proposed to address the need for an energy efficient
monitoring mechanism for WSNs. To reduce the amount of
energy consumed for monitoring purposes, the FMT framework
incorporates available energy forecasting and network aggre-
gation mechanisms. Instead of collecting the available energy
data from individual nodes periodically, the FMT framework en-
ables energy information to be communicated to the monitoring
node only when there is a variation in the network behavior,
which significantly reduces the amount of energy consumed for
monitoring purposes. The comparative simulation results show
that the FMT framework achieves accurate energy monitoring
and obtains network energy tomography of large scale wireless
sensor networks with minimum energy expenditure. Future work
includes extending the FMT framework to different application
scenarios, e.g., multiple and mobile sink nodes, and investigating
the impact of different network parameters and performance
metrics on the design of monitoring mechanisms of WSNs.
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