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Abstract

An important problem in bandwidth allocation and reservation over a communication link is to estimate the traffic bit rate
in that link. This can be done by using specific tools for measurements of the traffic bit rate. However, the obtained measures
are affected by some noise. Moreover, one might be interested in future traffic forecasting, when a prediction is needed. In this
paper, an iterative filtering procedure is proposed for updating the traffic estimate upon the arrival of a new measurement. A
birth and death stochastic model is assumed for the traffic bit rate to provide dynamical equations for the average behavior in the
absence of information carried by measurements. Approximate solutions of the same updating problem are also given under
the assumption that the posterior distribution of the traffic bit rate belongs to a specific class (beta or Gaussian distribution).
This leads to approximate filtering procedures, which are expected to provide significant computational advantages. Finally,
results obtained by processing simulated and real data are presented; stressing that the practical behavior of the approximate
filters is quite satisfactory.
© 2004 Published by Elsevier B.V.
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1. Introduction

Let us consider an Internet link (or in general, a telecommunication link) and the carried traffic on the
link. To guarantee the end-to-end Quality of Service (QoS) requirements of an aggregate of requests, a
given amount of bandwidth has to be reserved on the link. A bandwidth broker (BB) is the management tool
that makes bilateral agreements with its neighboring BBs, to allocate and reserve the required bandwidth
[13]. Since the bit rate of the request is variable, also the allocated bandwidth should be adapted to
follow those variations. A proposed scheme for resource provisioning is to have a bandwidth cushion,
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wherein extra bandwidth is reserved over the current usage, in order to overcome the problem of the exact
evaluation of the traffic. As proposed in[15], if the traffic volume on a link exceeds a certain percentage of
the agreement level, it leads to a multiplicative increase in the agreement. A similar strategy is proposed
in case the traffic load falls below a considerable fraction of the reservation. This scheme satisfies the
scalability requirement but leads to an inefficient resource usage.

A more efficient management policy could be based on the knowledge of the actual overall traffic bit
rate. However, any direct measurements of the bit rate are affected by measurement noise. Such noise
tends to obscure the underlying traffic state and can lead to erroneous conclusions in traffic flow analysis.
Removing such noise from the collected data is therefore desirable and can be accomplished by applying
filters. Moreover, one might be interested in a forecasting of future traffic, when a prediction is needed,
for the future traffic behavior.

As an example, Kalman filter has been applied to flow control in high-speed networks. In[8], Kalman
filter was used for state estimation in a packet-pair flow control mechanism. In[10], Kalman filter was
used to predict traffic in a collection of VC sources in one VP of an ATM network.

The traffic estimation problem was explicitly considered in[2] where a Kalman filter was adopted
with reference to an approximate model. The well known Kalman filter yields the optimal solution for
a dynamical estimation (filtering) problem whenever both dynamic and output equations are linear and
both state and observation noises are white, Gaussian, and purely additive. A second contribution in this
line has been given in[1], where the filtering problem for the underlying traffic is formulated and solved
with reference to a general birth and death stochastic model.

In this paper, we further investigate the model already proposed in[1] and develop two approximated
solutions for the underlying traffic filtering problem by introducing suitable simplifying assumptions.
The behavior of these approximate filters with respect to the exact filter as well as their robustness prop-
erties are tested against suitable simulated and real Internet traffic data. More precisely, inSections 2
and 3we recall the stochastic birth and death model which describes the evolution and measurement
of the traffic on a telecommunication link, as well as the exact filtering procedure in its two phases
of forecasting and updating. While in the forecasting phase the conditional mean value and variances
propagate according to closed form equation, the updating phase involves full computation of the up-
dated conditional distribution. If one wishes to waive this computational burden, it is necessary to ap-
proximate the conditional distribution itself with a member of a known distribution class. InSection 4
approximate solutions for the updating phase are given under the assumption that the posterior traffic
distribution belongs to a specific class, namely beta or Gaussian. This leads to approximate filtering
algorithms, which are expected to provide significant computational advantages. Note that the overall
approximated algorithm which is derived under the above-mentioned Gaussian assumption differs from
the one already presented in[2] in that the forecasting phase exactly follows the original birth-and-death
model and the approximated Gaussian distribution used in the updating phase is built about the current
state. Finally,Section 5contains results from simulated and real data processing and some concluding
remarks.

2. A model for the evolution and measurement of the traffic on a telecommunication link

Let x(t) ∈ {0, 1, . . . , N} denote the number of active connections at timet in a given communication
link, which allows a given maximum connection numberN. A simple birth-and-death model forx(t) may
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be given as follows[3,9,14]:

dx(t) = λ(t)(N − x(t)) dt + [dν1(t) − λ(t)(N − x(t)) dt] − µ(t)x(t) dt − [dν2 − µ(t)x(t) dt], (1)

whereν1(t), ν2(t) are doubly stochastic independent Poisson processes with rate processesλ(t)(N −x(t))

andµ(t)x(t), respectively,λ(t) andµ(t) being the birth and death rates assumed to be known non-negative
integrable functions. Characteristics of IP traffic at packet level are notoriously complex (self-similar).
However, this complexity derives from much simpler flow level characteristics. When the user population
is large, and each user contributes a small portion of the overall traffic, independence naturally leads to
a Poisson arrival process for flows[8,9]. Real traffic traces were obtained from the ABILENE and our
filters are tested for these traffic traces, showing the validity of the assumptions.

Eq. (1)may be solved starting from any given initial conditionx(t̄), t̄ ≤ t.
Let us denote bypk(t|t̄) = P(x(t) = k|t̄) the probability thatx(t) equalsk, conditioned upon all possible

given information up to timēt. Such conditioning will be explicitly specified in the notation whenever
needed. The birth-and-death model (Eq. (1)) corresponds to the following master equations forpk:

ṗk(t|t̄) = λ(t)[N − (k − 1)]pk−1(t|t̄) + µ(t)(k + 1)pk+1(t|t̄) − [λ(t)(N − k) + µ(t)k]pk(t|t̄),
k = 0, 1, . . . , N, (2)

where we set

p−1(t|t̄) = pN+1(t|t̄) = 0.

In a vector notation,Eq. (2)becomes

ṗ(t|t̄) = Q(t)p(t|t̄), (3)

where

p(t|t̄) = (p0(t|t̄) · · · pN(t|t̄))T

Q(t) =




−Nλ(t) µ(t) 0 · · · · · · 0

Nλ(t) −[(N − 1)λ(t) + µ(t)] 2µ(t) 0 · · · 0

0 (N − 1)λ(t) −[(N − 2)λ(t) + 2µ(t)] 3µ(t) · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 2λ(t) −[λ(t) + (N − 1)µ(t)] Nµ(t)

0 · · · · · · 0 λ(t) −Nµ(t)




.

(4)

As well known, the solution ofEq. (3), for a fixed valuep(t̄|t̄), is

p(t|t̄) = Φ(t, t̄)p(t̄|t̄), (5)

whereΦ(t, t̄) is the transition matrix which solves the equation

∂Φ(t, t̄)

∂t
= Q(t)Φ(t, t̄), Φ(t̄, t̄) = I. (6)
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From Eq. (3), a dynamical model for the mean valueE(x(t)|t̄) of x(t), conditioned upon the available
information up tōt, can be derived by simple pre-multiplication by the row vectorLT:

LT = ( 0 1 2 . . . N ),

dE(x(t)|t̄)
dt

= LTṗ(t|t̄) = LTQ(t)p(t|t̄) = −(λ(t) + µ(t))E(x(t)|t̄) + λ(t)N, (7)

hence

E(x(t)|t̄) = E(x(t̄)|t̄) e− ∫ t

t̄
(λ(s)+µ(s)) ds +

∫ t

t̄

e− ∫ t

u
(λ(s)+µ(s)) dsλ(u)N du. (8)

Similarly, by pre-multiplyingEq. (3)by the row vectorMT:

MT = ( 0 1 4 . . . N2 ),

we get for the mean value ofx2(t).

dE(x2(t)|t̄)
dt

= MTṗ(t|t̄) = MTQ(t)p(t|t̄)
= −2(λ(t) + µ(t))E(x2(t)|t̄) + (λ(t)(2N − 1) + µ(t))E(x(t)|t̄) + λ(t)N. (9)

Introducing the variance ofx(t):

σ2(t|t̄) = E((x(t) − E(x(t)|t̄)2|t̄) = E(x2(t)|t̄) − E2(x(t)|t̄).
Eq. (9)leads to the dynamical representation

dσ2(t|t̄)
dt

= −2(λ(t) + µ(t))σ2(t|t̄) − (λ(t) − µ(t))E(x(t)|t̄) + λ(t)N (10)

whose solution clearly is

σ2(t|t̄) = σ2(t̄|t̄) e−2
∫ t

t̄
(λ(s)+µ(s)) ds +

∫ t

t̄

e−2
∫ t

u
(λ(s)+µ(s)) ds[λ(u)N − (λ(u) − µ(u))E(x(u)|t̄)] du.

(11)

Eqs. (5), (8) and (11)may be (and will be) used to get predictive probability distribution (as well as mean
value and variance) ofx(t), t ≥ t̄ conditioned upon any given information available up to timet̄.

It is easily seen thatEqs. (7)–(10)can be also directly obtained from 1 and the corresponding model
for x2(t) by taking mean values of both sides.

All connections are supposed to employ the same known bandwidthC. A bandwidth broker is naturally
interested in knowing the total bandwidth requestCx(t). To that purpose, at the discrete timesiT, i =
0, 1, . . . whereT > 0 is a fixed sampling time, a specific device yields a measurementy(iT) of Cx(iT)

which is affected by errorn(iT):

y(iT) = Cx(iT) + n(iT), i = 0, 1, . . . (12)

The selection of the sampling time interval has to be performed in order to balance two opposing require-
ments. On one side,T has to be short enough to closely follow the traffic variations. On the other side,T
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has to be long enough to limit the control effort. The choice ofT depends on the relative importance of
the above two requirements and on the traffic variability.

We concentrate, without loss of generality, on a single streaming traffic class. Streaming traffic classes
are characterized by an inherent bit rateC that must be preserved in the network. To consider a scenario
with different traffic classes having different bandwidth requirements (different values ofC), the same
analysis can be extended and applied for each class. The constant resource requirement can be considered
valid in our context of DiffServ Expedited Forwarding class. Voice calls can be considered in this class,
but also video connections belong to this class and they have very different values ofC.

As far as the measurement noise is concerned, for security and privacy reasons, information in the
routers cannot always be accessed. This is why a large effort in the scientific community has been
devolved to the design of methods for the measurement of available bandwidth[5–7]. Available bandwidth
is complementary to the utilization, so measuring available bandwidth is equivalent to measuring the
aggregate traffic on the link. However, these methods are active measurements and thus intrinsically not
exact. They are based on the transmission of packets at increasing speeds, up to a maximum which is taken
as the value of the available bandwidth. This is the main basis for the belief that traffic measurements
are noisy and a filter has to be used to estimate the real value of the aggregate traffic. However, even in
the case in which router information can be accessed, the use of a tool to retrieve the information from
the routers is still required. One of the most popular tools is Multi Router Traffic Grapher (MRTG)[12],
which we have used for obtaining the real data in our performance evaluation section. Compared with
the previous methods based on active measurement, MRTG provides more accurate measurements but
still delays and errors in the transfer of the information can occur.

The sequence{n(iT), i = 0, 1, 2, . . . } is assumed to be white. Each error samplen(iT) is such that
y(iT) ∈ {0, 1, . . . , yM} whereyM = CN. Besides, the same is probabilistically characterized by the values
qh(iT|k) defined as follows:

qh(iT|k) = P(y(iT) = h|x(iT) = k), h ∈ {0, 1, . . . , yM}, k ∈ {0, 1, . . . , N}. (13)

At this point, the problem arises of optimally processing the available measurement data in order to get
an estimate ofx(t).

3. Optimal filtering for the number of active connections

We are now ready to formulate the problem of filtering forx(t), t ∈ [iT, (i + 1)T), that is the
on-line iterative determination of the optimal estimatex̂(t|i) of x(t), given all available information
y(0), y(T), . . . , y(iT) up to timeiT (denoted for simplicity byyi = {y(0), y(T), . . . y(iT)}).

Once specified that the available information is represented by the measurement values, we explicitly
denote bypk(t|i), iT ≤ t ≤ (i + 1)T the probability thatx(t) takes on the valuek givenyi:

pk(t|i) = P(x(t) = k|yi) (14)

and byp(t|i) the vector

p(t|i) = (p0(t|i)p1(t|i) · · · pN(t|i))T. (15)

The above probability can be iteratively computed in two steps:

(1) the predictive step, that is the computation ofp(t|i) from p(iT|i), iT ≤ t ≤ (i + 1)T ;
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(2) the updating step (or innovation), that is the computation ofp((i + 1)T |i + 1) from p((i + 1)T |i).
The first step is already solved byEq. (5)and uses the dynamical model ofEq. (3)for the free evolution
of the distribution ofx(t) over the time interval [iT, (i + 1)T ] with no new information besides the
information already available atiT, that isyi

p(t|i) = Φ(t, iT)p(iT|i), iT ≤ t ≤ (i + 1)T

and in particular

p((i + 1)T |i) = Φ((i + 1)T, iT)p(iT|i). (16)

As far as the second step is concerned, by Bayes’ formula and taking whiteness of{n(iT)} into account,
for y((i + 1)T) = h, we get

pk((i + 1)T |i + 1) = P(y((i + 1)T) = h|x((i + 1)T) = k, yi)pk((i + 1)T |i)
P(y((i + 1)T) = h|yi)

= P(y((i + 1)T) = h|x((i + 1)T) = k)pk((i + 1)T |i)∑N
l=0 P(y((i + 1)T) = h|x((i + 1)T) = l)pl((i + 1)T |i)

= qh(i + 1|k)pk((i + 1)T |i)∑N
l=0 qh(i + 1|l)pl((i + 1)T |i) . (17)

By introducing the matrix

Uh(i + 1) = diag
0≤k≤N

{qh(i + 1|k)}. (18)

Eq. (17)can be written in vector notation as

p((i + 1)T |i + 1) = Uh(i + 1)p((i + 1)T |i)
1TUh(i + 1)p((i + 1)T |i) , (19)

where 1T = ( 1 1 · · · 1 ).
Eqs. (16) and (19)allow us to computep((i + 1)T |i + 1) from p(iT|i).
The optimal estimatêx(t|i) of x(t), iT ≤ t < (i + 1)T is achieved by considering the minimum

conditional variance criterion of the estimate error, and thus it is given as

x̂(t|i) = E(x(t)|yi) = LTp(t|i).
Since the estimation error

e(t|i) = x(t) − x̂(t|i)
has zero mean value (i.e. the estimatex̂(t|i) is unbiased), the varianceσ2(t|i) of e(t|i) is simply given by

σ2(t|i) = MTp(t|i) − x̂2(t|i).
Obviously, even the computation of the optimal estimate and its variance can be performed in two steps:
prediction and update.

In the prediction step, similarly to what happens for the conditional probability, the iterative structure
still holds for both conditional mean value and conditional variance of the estimation error. In fact, for
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t ∈ [iT, (i + 1)T), they evolve, according toEqs. (8) and (11), as solutions of the linear differential
equations (7) and (10), respectively, keeping the following expressions:

x̂(t|i) = x̂(iT|i) e− ∫ t

iT(λ(s)+µ(s)) ds +
∫ t

iT
e− ∫ t

u
(λ(s)+µ(s)) dsλ(u)N du, (20)

σ2(t|i) = σ2(iT|i) e−2
∫ t

iT(λ(s)+µ(s)) ds +
∫ t

iT
e−2

∫ t

u
(λ(s)+µ(s)) ds[λ(u)N − (λ(u) − µ(u))x̂(u|i)] du.

(21)

On the contrary, in the update step the iterative structure vanishes, as far as the conditional mean and
its variance are concerned. In fact, at the measurement times, the conditional distribution undergoes a
discontinuity as described by(19); as a consequence, conditional mean value and variance also exhibit a
discontinuous behavior. In particular, we have

x̂((i + 1)T |i + 1) = LTUh(i + 1)p((i + 1)T |i)
1TUh(i + 1)p((i + 1)T |i) , (22)

σ2((i + 1)T |i + 1) = MTUh(i + 1)p((i + 1)T |i)
1TUh(i + 1)p((i + 1)T |i) − x̂2((i + 1)T |i + 1) (23)

which require the knowledge ofp((i + 1)T |i).

4. Approximate filters

In the previous section, we have seen that computation of predictive conditional mean valuex̂(t|i) and
conditional varianceσ2(t|i) of the estimation error can be performed according toEqs. (20) and (21),
respectively.

The only really consistent computational burden is related to the update of the estimation through the
innovation step occurring at measurement times(i + 1)T . Indeed, as already mentioned, computation
of x̂((i + 1)T |i + 1) andσ2((i + 1)T |i + 1) (according toEqs. (22) and (23)) requires full knowledge
of p((i + 1)T |i); this in turn requires solution ofEq. (6). The latter is a linear time varying differential
equation system of dimensionN + 1.

The issue then arises of specific approximations, which allow direct update ofx̂(t|i) andσ2(t|i) at time
t = (i + 1)T without computation ofp((i + 1)T |i).

For instance, one could think of suitable numerical approximations forpk((i + 1)T |i) with respect to
k, with the aim of transformingEqs. (22) and (23)into a system of iterative equations in the pairx̂(iT|i)
andσ2(iT|i).

A technically sounder approach is to introduce structural modifications in the model suitable to guar-
antee thatp((i + 1)T |i) be uniquely defined by its mean value and variance, and that this property
is kept through the innovation step. This means assuming for the distribution ofx(iT) conditional on
yi and for the distribution ofy(iT), conditioned onx(iT), suitable conjugate forms[4]. One possibil-
ity in this line is to assume forx(t)/N, conditioned uponyi, t ∈ [iT, (i + 1)T) a beta distribution,
Beta(α(t|i), β(t|i)) and fory(iT), conditioned uponx(iT), a binomial distribution Bin(yM, Cx(i)/yM).
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In the following the solution obtained by these assumptions will be referred to as “binomial filter”. As
known[4]:

px(t)/N(ξ|yi) = K(α(t|i), β(t|i))ξα(t|i)−1(1 − ξ)β(t|i)−1, ξ ∈ [0, 1], (24)

whereK(α(t|i), β(t|i)) is a normalization factor (inverse of the beta function).
We must observe that the probabilistic nature assumed inEq. (24)for x(t)/N corresponds to a continuous

behavior forx(t) (no more constrained to assume integer values) but still confined in the range [0, N].
Mean and variance ofx(t), t ∈ [iT, (i + 1)T), givenyi, are respectively given by

x̂(t|i) = Nα(t|i)
α(t|i) + β(t|i) , (25)

σ2(t|i) = N2α(t|i)β(t|i)
(α(t|i) + β(t|i))2(α(t|i) + β(t|i) + 1)

. (26)

As far asy(iT) is concerned, we have

P(y(iT) = h|x(iT)) =
(

yM

h

)(
x(iT)

N

)h (
1 − x(iT)

N

)yM−h

, h ∈ {0, 1, . . . , yM}

with mean value and variance given by

E(y(iT)|x(iT)) = Cx(iT), σ2(y(iT)|x(iT)) = Cx(iT)

(
1 − x(iT)

N

)
.

Eqs. (25) and (26)may be easily solved in terms ofα(t|i) andβ(t|i):

α(t|i) = x̂2(t|i)
σ2(t|i) − x̂3(t|i)

Nσ2(t|i) − x̂(t|i)
N

, β(t|i) =
(

x̂(t|i)
σ2(t|i) − x̂2(t|i)

Nσ2(t|i) − 1

N

)
(N − x̂(t|i)).

At the measurement time(i + 1)T updating ofα andβ is easily achieved by exploiting the conjugate
character of beta and binomial distributions:

α((i + 1)T |i + 1) = α((i + 1)T |i) + y((i + 1)T),

β((i + 1)T |i + 1) = β((i + 1)T |i) + yM − y((i + 1)T).

This allows to perform the innovation step without the use of full knowledge ofp((i + 1)T |i):

x̂((i + 1)T |i + 1) = x̂((i + 1)T |i) + Nσ2((i + 1)T |i)[y((i + 1)T) − Cx̂((i + 1)T |i)]
(CN − 1)σ2((i + 1)T |i) + Nx̂((i + 1)T |i) − x̂2((i + 1)T |i) ,

(27)

σ2((i + 1)T |i + 1)

= [σ2((i + 1)T |i)[Nx̂2((i + 1)T |i) − x̂3((i + 1)T |i) − x̂((i + 1)T |i)σ2((i + 1)T |i)
+ Ny((i+1)T)σ2((i + 1)T |i)]][ Nx̂((i + 1)T |i) − x̂2((i + 1)T |i) + (CN − 1)σ2((i + 1)T |i)]−2

× [Nx̂((i + 1)T |i) − x̂2((i + 1)T |i) − σ2((i + 1)T |i)](N − x̂((i + 1)T |i))
+Nσ2((i + 1)T |i)(CN − y((i + 1)T))][Nx̂((i+1)T |i)−x̂2((i + 1)T |i)+CNσ2((i + 1)T |i)]−1.

(28)
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Eqs. (27) and (28), along with the free evolutions ofEqs. (20) and (21), provide a constructive two-
dimensional solution of the filtering problem.

A second possible choice for conjugate distributions of, conditioned onyi andx(iT) respectively, is to
assume Gaussian distribution for both of them. This not only cancels the discrete character ofx(iT) and
y(iT), but also broadens their support (naturally positive and bounded) to the whole ofR1. Furthermore,
differently from previous model, the distribution of the measurement errorn(iT) is now independent of
x(iT). The filter obtained with these assumptions will be called Gaussian filter.

On the other hand, the Gaussian assumption leads to the well-known Kalman–Bucy filter. Now, the
innovation step is described by the classical equations:

x̂((i + 1)T |i + 1) = x̂((i + 1)T |i) + K(i + 1)[y((i + 1)T) − Cx̂((i + 1)T |i)],
σ2((i + 1)T |i + 1) = (1 − CK(i + 1))σ2((i + 1)T |i),

where the innovation gainK(i + 1) is given by

K(i + 1) = Cσ2((i + 1)T |i)
C2σ2((i + 1)T |i) + σ2

n((i + 1)T)
(29)

In (29), σ2
n((i + 1)T) denotes the value of the variance of the measurement errorn((i + 1)T).

As far as the prediction step is concerned,Eqs. (20) and (21)still hold, so that again we achieve a
constructive two-dimensional solution.

A final remark concerns the free evolution stochastic model leading to the prediction step ofEqs. (20)
and (21). Instead of the model inEq. (1)which corresponds to a discrete valued state, one might adopt a
continuous valued state model such as

dx(t) = λ(t)(N − x(t))dt − µ(t)x(t)dt + dω(t),

where the martingaleω(t) has zero mean and (state dependent) incremental varianceσ2
ω(t) dt equal to the

incremental variance of the martingale term inEq. (1), that is

σ2
ω(t) = λ(t)(N − x(t)) + µ(t)x(t).

This is the model approach taken in[2].

5. Performance evaluation and comparison of the filters

In order to assess the performance of the various filters proposed in the previous sections, as well as
to compare their behaviors, we tested the filters both on simulated and real data. Results on simulated
data are reported inFigs. 1–5. In all cases, the initial condition was assumed to bex(0) = 25 and data
are shown for the long-range behavior{iT}, i = 100, . . . , 1000. The initial transient time is not reported,
because of its limited applicative interest. However, we noted that the behavior of all filters was quite
satisfactory even in that time phase.

In the first three experiments, the ratesλ andµ were taken time invariant, and the distribution of the
measurement noise was chosen according to different models. In particular, inFig. 3 the variance of the
measurement noise corresponds to the variance assumed in the binomial filter when computed around
the long range value ofx(t). In the last two experiments the ratesλ andµ were assumed to vary in time
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Fig. 1. Simulated data.N = 50; C = 1; λ = 0.05; µ = 0.005; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob.
0.15).
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Fig. 2. Simulated data.N = 50; C = 1; λ = 0.05; µ = 0.005; n(iT) = −2 (with prob. 0.2),−1 (with prob. 0.2), 0 (with prob.
0.2), 1 (with prob. 0.2), 2 (with prob. 0.2).
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Fig. 3. Simulated data.N = 50; C = 1; λ = 0.067; µ = 0.003; n(iT) = −2 (with prob. 0.2),−1 (with prob. 0.2), 0 (with prob.
0.2), 1 (with prob. 0.2), 2 (with prob. 0.2).
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Fig. 4. Simulated data.N = 50; C = 1; λ(t) = 0.005, t ∈ [0, 400] ∪ (800, 1200] ∪ (1600, 2000], 0.05, t ∈ (400, 800]
∪(1200, 1600]; µ = 0.005; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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Fig. 5. Simulated data.N = 50; C = 1; λ(t) = 0.05, t ∈ [0, 800] ∪ (1600, 2000], 0.08, t ∈ (800, 1600]; µ(t) = 0.005,
t ∈ [0, 400]∪ (1200, 2000], 0.01, t ∈ (400, 1200]; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).

according to the behavior reported in the captions. As a performance index, the coefficient of variation
(CV) was computed in all experiments according to the formula:

CV =
√

(1/N)
∑1000

i=100[x(iT) − x̂(iT|i)]2

(1/N)
∑1000

i=100x(iT)
.

Based on the results of simulated data processing, the following remarks appear to be appropriate:

(1) The exact filter is able to closely follow the behavior ofx(t) in a very satisfactory way.
(2) Both approximate filters exhibit a performance not significantly worse than the exact one.

These remarks are robust against variations in theλ, µ, N values and/or variation in the measurement
noise distribution.

We also applied the proposed filters to real data, with knownC value (Figs. 6–9). Now a preliminary
estimation ofλ, µ, N was requested. We have estimatedN according to the standard estimation procedure
for the maximum admissible value of a random variable[11]. The values ofλ andµ were derived observing
that the average inter-arrival time is(λ + µ)/Nλµ and the average inter-departure time is(λ + µ)/Nµ2.
Parametersλ andµ have been estimated by evaluating the above times on the available historical data.
Obviously, these estimation procedures work in the assumption of constancy of the unknown parameters.
Should they vary in time, a joint state and parameter estimation problem arises. This is a complex issue
indeed which could be the object of a future research.
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Fig. 6. Input traffic on nordunet interface of Abilene router in NYC on 20 May 2003 withN = 35; C = 1; λ = 0.05;
µ = 0.04; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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Fig. 7. Output traffic on nordunet interface of Abilene router in NYC on 20 May 2003 withN = 30; C = 1; λ = 0.01;
µ = 0.04; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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Fig. 8. Input traffic on SOX interface of Abilene router in Atlanta on 20 May 2003 withN = 30; C = 1; λ = 0.05;
µ = 0.05; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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Fig. 9. Output traffic on SOX interface of Abilene router in Atlanta on 20 May 2003 withN = 65; C = 1; λ = 0.05;
µ = 0.05; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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We tested the above estimation procedures on simulated data with satisfactory results. As a matter of
fact, also the distribution of the measurement noisen should be identified; however, being the estimation
procedures robust against modifications of this distribution, we have assumed an a priori reasonable choice.

The performance of the approximated (binomial or Gaussian) filters as compared to the exact filter was
assessed according to the following index:

CV =
√

(1/N)
∑200

i=20[x̂exact(iT|i) − x̂approx(iT|i)]2

(1/N)
∑200

i=20 x̂exact(iT|i) .

Lastly, we wished to test robustness of filters against possible uncertainty in the values of parameters
λ, µ, N (Figs. 10–12). The quantitative assessment of the robustness uses the CVindex defined as

CV =
√

(1/N)
∑1000

i=100[x̂(iT|i) − x̂′(iT|i)]2

(1/N)
∑1000

i=100 x̂(iT|i) ,

wherex̂(iT|i) denotes the filter output in the case of full knowledge of parameters values, whilex̂′(iT|i)
denotes the same output when an error is introduced in the parameter values themselves. Some conclusions
may be drawn from the above:

(1) The optimal filter allows to iteratively compute the conditional means and variances by a closed form
algorithm in the prediction step (seeEqs. (20) and (21)).
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Fig. 10. Robustness analysis by simulated data; exact parameter values:N = 50, C = 1, λ = 0.05, µ = 0.005; modified
parameter values:N = 60, C = 1, λ = 0.06, µ = 0.006; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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Fig. 11. Robustness analysis by simulated data; exact parameter values:N = 50, C = 1, λ = 0.05, µ = 0.005; modified
parameter values:λ = 0.075, µ = 0.0075; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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Fig. 12. Robustness analysis by simulated data; exact parameter values:N = 50, C = 1, λ = 0.05, µ = 0.005; modified
parameter values:N = 60; n(iT) = −1 (with prob. 0.15), 0 (with prob. 0.7), 1 (with prob. 0.15).
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(2) In the updating step the iterative structure holds at the level of a(N + 1)-dimensional vector (con-
ditional distribution) (seeEq. (19)). This in turn requires the computation (possibly off-line) of the
transition matrix (Eq. (6)), that is, the solution of a differential equation system of dimensionN + 1.

(3) The two approximate filters feature simple iterative structures both in the prediction and updating
steps. Their implementation does not require any complex calculation; thus they can be used on-line
(as the well known Kalman filter) and are simple enough to be implemented in high speed networks.

(4) The approximate filters behave quite satisfactorily as compared to the exact one. Since they feature
a simpler computational structure, they provide a valid interesting alternative.

(5) Processing real data (obtained form the ABILENE router) confirms the accuracy of our filters and,
as a side result, the validity of the linear birth and death model assumed inEq. (1).

(6) The analysis of the filter robustness shows that all filters are highly insensitive with respect to variations
in λ, µ values. A similar robustness property holds with respect toN for the exact and Gaussian cases,
while the binomial filter exhibits a significant sensitiveness with respect toN itself.

(7) Forecasting problems may find a solution via free evolution of probability distribution according to
some stochastic model for traffic dynamics (such as birth-and-death model ofEq. (1)).
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