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Abstract—In this paper, a reliable multicast transport protocol
TCP-Peachtree is proposed for satellite Internet protocol (IP)
networks. In addition to the acknowledgment implosion and
scalability problems in terrestrial wirelined networks, satellite
multicasting has additional problems, i.e., different multicast
topology, different type of congestion control problems, and
low bandwidth feedback link. In TCP-Peachtree, the modified
B+ tree logical hierarchical structure is used to form dynamic
multicast groups. Local error recovery and acknowledgment
(ACK) aggregations are performed within each subgroup and also
via logical subgroups. In order to avoid the overall performance
degradation caused by some worst receivers, a local relay scheme
is designed. Two new algorithms, jump start and quick recovery,
which are based on the usage of a type of low-priority segments
called NIL segments, are proposed for congestion control. NIL
segments are used to probe the availability of network resources
and also for error recovery. The delayed selective acknowledgment
(SACK) scheme is adopted to address the bandwidth asymmetry
problems and a hold state is developed to address persistent
fades. The simulation results show that the congestion control
algorithms of TCP-Peachtree outperform the TCP-NewReno
when combined with our hierarchical groups and improve the
throughput performance during rain fades. It is also shown that
TCP-Peachtree achieves fairness and is very highly scalability.

Index Terms—Acknowledgment (ACK) aggregation, congestion
control, local recovery, reliable multicast, satellite Internet pro-
tocol (IP) networks.

I. INTRODUCTION

SATELLITE networks will play a crucial role in the global
infrastructure of the Internet. They do not only provide

global coverage, but also are capable of sustaining high
bandwidth levels and supporting flexible and scalable network
configurations. Currently, two thirds of the world still does not
have a wired network infrastructure. Locally built networks
or individual hosts can be connected to the rest of the world
via satellites by simply installing satellite interfaces. Satellite
networks can also be used as a backup for existing networks,
e.g., in case of congestions or link failures, traffic can be
rerouted through satellites.

Multicasting provides an efficient way of disseminating data
from a sender to a group of receivers. Instead of sending a sepa-
rate copy of the data to each individual receiver, the sender just
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transmits a single copy to all receivers. In this case, a multicast
tree is set up in the network, where the sender is the root and
the receivers are the leaf nodes. Data generated by the sender
flows through the multicast tree, traversing each tree edge ex-
actly once [24].

A large variety of reliable multicast protocols [12], [15],
[20], [24], [25], [28], [29] have been proposed for the terrestrial
wirelined networks, where packet losses occur mostly due to
congestions. These protocols are usually classified into two
groups: sender-initiated protocols, which use acknowledg-
ments (ACKs), and receiver-initiated protocols, which use
negative ACKs (NAKs). By this classification, reliable multi-
cast transport protocol (RMTP) [24] is a typical sender-initiated
protocol, in which receivers form local groups for local error
recovery. Scalable reliable multicast (SRM) [12] is a typical
receiver-initiated protocol, retransmission is performed in the
entire group. Tree-based multicast transport protocol (TMTP)
[29] uses both ACKs and NAKs. Multicast transfer control
protocol (MTCP) [25] uses error bitmap in ACKs which is
similar to TCP selective acknowledgment (SACK) option.
However, MTCP introduces high overhead for large congestion
window.

Satellite networks have high bit-error rate (BER), long prop-
agation delays, and asymmetrical bandwidth [2]. These char-
acteristics distinguish satellite multicasting from multicasting
in terrestrial wirelined networks. In addition to the acknowl-
edgment implosion and scalability problems in terrestrial wire-
lined networks, satellite multicasting has the following addi-
tional problems.

• Different Multicast Topology: In terrestrial multicast net-
works, the receivers may be located in different places,
connected by intermediate routers, and may be several
hops distant from the sender. Usually, a multicast tree is
created with the help of intermediate routers. While in
satellite multicast networks, all receivers receive packets
directly from the satellite and there are no intermediate
routers between the satellite and the receivers. On the other
hand, the receivers send acknowledgments directly to the
satellite. In other words, the receivers are only one hop
away from the satellite. Therefore, there is no physical
hierarchy between the satellite and the receivers. Conse-
quently, the multicast schemes [12], [15], [20], [24], [25],
[28], [29] that are based on multicast trees and are devel-
oped for terrestrial multicast networks cannot be applied
in satellite multicasting. Furthermore, each receiver may
experience different data losses for satellite multicasting
and there is no guarantee that some receivers may always
have better channel conditions. As a result, some mostly
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Fig. 1. Satellite multicast scenario.

used terrestrial multicast schemes such as selecting some
special servers or some intermediate routers as repairers
[15], [20] may not be used here.

• Congestion Control Problems: TCP problems in satellite
IP networks and related research issues are discussed in
[2]. As pointed out in [2], the congestion control for satel-
lite IP networks is difficult due to long propagation delay,
high BER, and asymmetrical bandwidth for unicast appli-
cations. For satellite multicasting, these problems become
more complicated. Traditional TCP schemes usually per-
form poor in these situations [22]. Furthermore, satellite
link channels can experience persistent link fades due to
varying weather patterns [18]. The congestion control al-
gorithms should be able to address the persistent fades to
reduce performance degradation and unnecessary trans-
missions when the links are unavailable.

• Low Bandwidth Feedback Link: A terrestrial feedback link
to the sender has been proposed in [17] and [19]. However,
this is difficult to implement in some cases, especially for
mobile receivers, which need to use low-bandwidth uplink
channel as the feedback link. The feedback link is usu-
ally not faster than several hundred kilobits per second for
small satellite terminals and a few megabits per second for
larger satellite terminals [13].

In the satellite domain, relatively few research has been per-
formed on reliable multicast protocols [17]–[19]. Some key is-
sues to design satellite multicasting are reviewed in [19] and it
is shown in [17] that the introduction of a feedback channel is
the key to realize bandwidth-efficient, robust, and fully reliable
multicast communication via satellites.

In this paper, we consider the satellite multicast scenario as
shown in Fig. 1. Here, the sender transmits packets to the satel-
lite through a gateway, then the satellite multicasts packets di-
rectly to all receivers. Some receivers may have terrestrial con-
nection among them. Note that not all receivers necessarily need
to be connected by terrestrial networks. The receivers use the
satellite uplink channel as the feedback link to the sender. Usu-
ally, the receiver is a User Earth Station with two way satel-
lite connectivity and terrestrial multicast connectivity. The User
Earth Station can work as a proxy for all the terrestrial users
connected to it and will be treated as only one receiver in this
paper.

Considering the challenges in satellite multicasting, we pro-
pose a new reliable multicast transport protocol TCP-Peachtree
for satellite IP networks. Our contributions are the following.

• Hierarchical Logical Groups on the Reverse Path: Due to
the special topology of satellite multicasting, all receivers
are only one hop away from the satellite and, hence, there
is no physical hierarchy. It is not possible to generate
a multicast tree for satellite multicasting as in the case
of wirelined networks. The satellite transmits packets di-
rectly to all receivers. If all receivers send acknowledg-
ments directly to the satellite, the acknowledgment implo-
sion problem becomes very challenging. This is based on
the fact that the huge number of receivers are only one hop
away from the satellite and no intermediate routers can be
used to aggregate the ACKs. Furthermore, the low band-
width for the feedback link makes the problem worse. In
order to address the acknowledgment implosion and the
low bandwidth feedback link problems, we propose the
so-called logical hierarchical groups on the reverse path.
Based on the logical hierarchical groups, we propose ACK
aggregation, local error recovery, and local relay schemes
to suppress the acknowledgments from the receivers and
to reduce retransmissions from the sender.

• New Window-Based Congestion Control Scheme: As
mentioned before, in geosynchronous earth orbit (GEO)
satellite multicasting, all receivers have approximately
the same round-trip time (RTT) values. Thus, we pro-
pose a new window-based congestion control scheme
for reliable multicasting in the satellite networks. The
new window-based congestion control scheme uses the
so-called NIL segments. Unlike the dummy segments
proposed in [3], NIL segments are not only used to probe
the available network resources, but also to recover packet
losses in the receivers. The delayed SACK scheme is
adopted to address the bandwidth asymmetry problems.
Two new algorithms: jump start and quick recovery are
also proposed to address long propagation delays and
high BERs in the satellite networks. Furthermore, a hold
state is introduced to address the persistent fades.

This paper is organized as follows. The multicast procedures
in TCP-Peachtree are presented in Section II. Then, the con-
gestion control problem is discussed in Section III. Simulation
results are given in Section IV. Conclusions are presented in
Section V.

II. MULTICAST PROCEDURES IN TCP-PEACHTREE

A. B Tree Hierarchy

For GEO satellite multicasting, the satellite sends packets di-
rectly to all receivers and there is no physical hierarchy. In order
to suppress the number of ACKs from the receivers and to re-
duce retransmissions from the sender, we propose logical hi-
erarchical groups on the reverse path. As some receivers may
have terrestrial connections among them, they may form one or
more logical hierarchical groups so that each group only needs
to send one ACK for each received packet. On the other hand,
local recovery, and local relay schemes can be used for local
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Fig. 2. Typical B+ tree.

error recovery to reduce retransmissions from the sender. The
satellite still sends packets directly to all receivers, the logical
hierarchical group is only formed on the reverse path such that
the packet transmissions from the satellite to the receivers are
not affected. Note that “reorganizing” receivers in the logical
hierarchy does not lead to high overhead and is not error prone.

The logical hierarchy is constructed in a way similar to
the B tree [9]. B tree is a data structure typically used for
searching data with data pointers stored only at the leaf nodes
of the tree. The main benefit of B tree is that it is balanced. A
B tree of order has the following characteristics.

• Each internal node is of the form

where and each is a tree pointer and is the
key value for searching.

• Within each internal node, .
• For all search field values in the subtree pointed at by

, we have for for
, and for .

• Each internal node has at most tree pointers.
• Each internal node, except the root, has at least

tree pointers. The root node has at least two tree pointers
if it is an internal node.

• An internal node with pointers has search
field values.

A typical B tree is illustrated in Fig. 2, where six numbers:
1, 3, 5, 7, 8, and 12 are stored in a B tree of order 2. All
numbers are stored in the leaf nodes. The key values 3, 5, and
8 are used for key searching. The leaf nodes of the B tree are
usually linked together to provide ordered access to the records.

Here, we use B tree to update hierarchical structure auto-
matically instead of searching for a key. So we modify the tra-
ditional B tree [9] as follows.

• The modified B tree forms a multicast group.
• Each leaf node corresponds to a multicast subgroup which

consists of physical receivers.
• Each internal node corresponds to a logical subgroup,

which is created by choosing the designated receiver
(DR) from each of its child subgroups. The DR is a node
in a subgroup that is responsible for ACK aggregation,
local error recovery, and exchanging information with
members in its parent subgroup on behalf of all members
in its subgroup.

• In a subgroup, one member is selected as the DR.

Fig. 3. Random selection algorithm.

• Each node (i.e., a multicast group) has at most mem-
bers.

• Each node (i.e., a multicast group), except the root, has
at least members. The root node has at least two
members, if it is an internal node.

The join and split procedures for the standard B tree are also
modified to update the modified B tree dynamically when a
member joins or leaves the multicast group. Using the modified
B tree, we create a dynamic hierarchical structure for each
multicast group.

B. Selecting the DR

Any member can start a multicast group by sending a
signaling message to the satellite via the uplink channel. This
member becomes the DR initially and it also gets a group ID
from the sender, which is used for later transmissions. When
members join or leave a multicast group, subgroups may be
split or joined accordingly and, consequently, new DRs can
be selected. A DR is selected according to the packet loss
statistics. The DR selection procedures are as follows.

• Each receiver calculates the packet loss statistics and
sends it to the DR periodically. Let be the number of
losses from the sender observed by receiver in epoch
and let be the packet loss statistics from the sender,
then is updated as follows:

(1)

where and . If is the sum of
missing packets from the sender. Usually, .

• The DR then ranks all members in an increasing order
according to their packet loss statistics from the sender.

• The probability for the receiver to be selected as a DR
is calculated from

(2)

where is the rank of the multicast receiver and is
the number of members in the multicast subgroup.

• Choose a random value .
• The random selection algorithm is as shown in Fig. 3 to

select the DR (assuming and are variables): As a
result, the receiver is chosen as the DR for this multicast
group.

The advantage of the random selection procedure is to choose
the DR according to its packet loss statistics. The receiver with
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lower packet loss rate has a higher chance to become a DR. The
random selection algorithm can also address the dynamic nature
of the network. A receiver with very low packet loss rate does
not necessarily mean that it maintains that state forever.

The DR in each subgroup has the following functions.

• Buffer packets received from the sender and use them for
local error recovery.

• Aggregate ACKs for a packet in this subgroup into one
ACK and pass it to the DR in its parent logical subgroup.

• Perform local retransmission.
• Forward retransmission requests to its parent logical

subgroup.
• Work as a relay for receivers which have very bad channel

conditions.
• Manage member joining or leaving.
• Calculate and select a new DR for a new subgroup which

is split from the current subgroup.

C. Members Joining a Multicast Group

A new member sends a particular LOOK FOR DR packet
with time-to-live (TTL) parameter equal to one. Upon receiving
this packet, the DRs send IM DR type of ACK to the new
member, which then chooses the DR with the smallest RTT
value. If no reply comes back from any DR, the TTL value
is increased by one and this procedure is repeated until a DR
is found with the RTT value satisfying: ,
where TRTT is a threshold and is discussed and defined in the
performance evaluation in Section IV. Then, the new member
joins that multicast group. If no DR can be found with a very
large TTL value, it means that either no terrestrial connection
exists from the new member to other DRs, or all DRs are too
far away. If the DRs are too far away, it takes a long time to do
retransmissions and ACK aggregations when the new member
joins that group and, hence, affects the response time of that
group to the sender and, consequently, the overall performance
is degraded. In this case, the new member must initiate a new
multicast group by sending a signaling message to the sender
and becomes the DR of this multicast group initially. When
a new member joins a multicast group, it must first join a
subgroup at the leaf in the logical hierarchical structure. If the
number of the members in a multicast subgroup exceeds a given
threshold , then we split the group into two subgroups, with
one subgroup keeping the current DR, while the other subgroup
selecting a new DR. As a result, a new DR in the upper logical
multicast group is selected. We repeat this procedure in the
upper logical multicast groups if necessary until the highest
logical multicast group is reached.

D. Members Leaving a Multicast Group

When a member leaves a multicast group and the number of
group members becomes less than , then the group mem-
bers are redistributed to a neighboring group, or two groups
are merged into one. In the latter case, a DR is identified for
the new subgroup and the according DR is removed from the
upper logical multicast group. This procedure is repeated if nec-
essary until the highest logical multicast group is reached. If the

last member in the multicast group is removed, it sends a re-
lease message to inform the sender that this multicast group is
removed.

E. Logical Tree Setup Overhead

In order to setup the logical tree, new members need to
send LOOK FOR DR packets to the DRs and the DRs send
IM DR type of ACKs back to the new members. We call the
LOOK FOR DR and IM DR packets G JOIN messages. The
number of G JOIN messages used to form logical subgroups
is a measurement of logical tree setup overhead [8]. Assume a
logical tree has levels of hierarchies and the average number
of G JOIN messages for a group member to join a subgroup is

. In order to calculate the total number of G JOIN messages
for a logical tree, we consider two extreme cases.

• The Best Case: The number of members in each subgroup
is , hence the maximum number of receivers in this
group is . The total number of members in the logical
tree, including physical receivers and DRs is

(3)

Obviously, the total number of G JOIN messages is
and the number of G JOIN messages for the physical re-
ceivers to join the multicast group is , hence the
number of G JOIN messages used to form logical sub-
groups is . As a result, the logical tree setup
overhead is

(4)

Since the total number of receivers in a multicast group,
i.e., , is very large, , we get

(5)

• The Worst Case: The root has two members and the other
subgroups have members. Thus, the minimum
number of receivers is 1 for and for

. The total number of members in the logical tree,
including physical receivers and DRs is

(6)

Similarly, we get the logical tree setup overhead

(7)

Consequently, the logical tree setup overhead is

(8)

Usually, is very large and, hence, the logical tree setup
overhead is very small. For example, if , the logical
tree setup overhead is in the range of 5% to 11%. If is
larger, becomes much smaller.



392 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 2, FEBRUARY 2004

F. ACK Aggregation

Received packets are reported in ACKs. The DR in a log-
ical multicast group receives ACKs from members in its group.
After it receives all ACKs for a packet from all members in its
group, the DR sends an ACK to the upper logical subgroup.
The DR in the upper logical group also receives ACKs from its
members and sends ACKs to its parent logical group. The DR
in the highest logical group then sends an ACK to the satellite
via the uplink channel. Thus, for each packet only one ACK is
sent to the sender and, hence, the feedback implosion problem
is solved. Upon receiving ACKs, the sender also aggregates the
ACKs from different multicast groups.

In order to further reduce the number of ACKs from this log-
ical hierarchical group, the delayed SACK scheme is adopted
here. The DR in the highest level sends one SACK for a given
number of data packets received if the sequence numbers of the
received packets are increased accumulatively. Otherwise, the
DR sends the SACK to the satellite immediately.

G. Local Error Recovery

For satellite multicasting, different receivers may have
uncorrelated packet losses. Although forward error correction
(FEC) is very efficient to recover uncorrelated packet losses
[26], it also introduces high overhead and requires additional
software or hardware processing capability at the receiver side.
Here, local error recovery is used to address uncorrelated packet
losses. Local error recovery may also suffer from “single point
of failure” problem when a DR fails, this problem is solved by
reassigning another DR to take it over in TCP-Peachtree.

Local error recovery solution is also presented in [24], [25],
and [29], however, they are based on the terrestrial multicast
tree. In TCP-Peachtree, local error recovery is based on the B
tree hierarchical structure introduced in Section II-A.

Each DR in a subgroup maintains a buffer to hold a number of
packets for local retransmission. If a receiver is DR in several
different logical hierarchical groups, it shares the same buffer
for different hierarchical logical levels. The advantage is that
this receiver can obtain lost packets from different logical levels
in order to increase the chance for local recovery.

The missing packets are reported in NAKs. When a member
does not receive a packet correctly, it sends a NAK to the DR
in its subgroup. If the lost packet is in the DR’s buffer, the DR
retransmits the lost packet to the receiver immediately. If not,
the DR first multicasts a NAK to all members in its subgroup.
Any member having the correct packet in its buffer can unicast
that packet to the DR. On the other hand, the DR sets a timer for
the lost packet. If the lost packet is received from other mem-
bers in this subgroup, the DR unicasts the lost packet to the
corresponding receiver if only one NAK is received for the lost
packet, or multicasts the lost packet to its entire subgroup if mul-
tiple NAKs for this lost packet are received. If a timeout occurs,
the DR sends a NAK to the DR in its parent logical group and
will try to get the lost packet from its upper logical subgroup.
This procedure is repeated until the highest logical subgroup is
reached. If no success, one NAK is sent to the satellite via the
uplink channel. The sender then multicasts the missed packets
to all receivers.

H. Local Relay

Due to very bad channel conditions, some receivers may have
relatively much higher packet loss rates than some other re-
ceivers. As a result, the overall performance is degraded since
the sender needs to make reliable transmissions to those re-
ceivers. In order to improve the overall performance, a local
relay scheme is designed, which is used if the packet loss rate

from the sender of member is higher than a given threshold
, i.e.,

(9)

In this scheme, the DR in the corresponding subgroup for-
ward every packet it receives from the satellite to member in
order to reduce retransmission requests from member . is up-
dated and reported to the DR periodically. If is less than the
given threshold , the DR stops forwarding packets to member .

I. DR Handoff

When a DR leaves a multicast group, or when a new DR is
selected during group join or merge, handoff is performed be-
tween two DRs. The new DR needs to create or update the data
structure to store its group member information in each logical
hierarchical level in which it is a DR. The new DR only needs to
get the information of aggregated ACKs from the current DR or
its DR in its parent logical subgroup. The current DR also needs
to inform the group members to change their DR. After the new
DR is ready to work, it sends a message to current DR and also
all members in each logical subgroup in which it is a DR. Upon
receiving this message, the subgroup members send ACKs to
the new DR. The current DR forward all ACKs it receives to
the new DR. ACKs may get lost during DRs handoff. In order
to prevent those losses, the new DR multicasts a message to all
members in its group to resend ACKs to it. Upon receiving such
message, all members send the ACKs to the DR immediately.

J. DR Failure

If a DR fails, a new DR is selected based on the procedure de-
scribed in Section II-A and the B tree type hierarchical struc-
ture is updated accordingly. There are two ways to detect a DR
failure. In the first case, a DR detects the failure of a member,
which is a DR in its child subgroup, by keeping track of the
ACKs from that member. If the DR does not get any message
from a member for a certain time period, it sends a poll mes-
sage to this member. Upon receiving this message, the member
should send an ACK for this message immediately. If such an
ACK is not received during a certain time period, the DR as-
sumes this member as nonexisting and it acts as a DR for the
misfunctioning subgroup temporarily until a new DR is selected
from that subgroup.

For the DR in the highest logical subgroup, the above
method does not work. Thus, the DR in the highest logical
subgroup multicasts a poll message to its member periodically.
If a member does not receive such a message within a certain
time period, it sends the poll message to the DR. If it does not
get an ACK for this poll message from the DR within a time
period, it assumes that the DR has failed. Thus, it acts as a DR
temporarily until a new DR is selected.
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Fig. 4. TCP-Peachtree flow chart.

We could also use another method to cope with the DR
failure. A special receiver is selected by the DR as a backup
in each subgroup. The DR sends updated information to the
backup receiver periodically, while this receiver sends a poll
message to the DR periodically to probe the up-to-date status
of the DR. If the DR fails, the backup receiver takes over the
control and works as a new DR.

III. CONGESTION CONTROL IN TCP-PEACHTREE

TCP-Peachtree congestion control contains two new al-
gorithms: jump start and quick recovery, as well as the two
traditional TCP algorithms, congestion avoidance and fast
retransmit. The TCP SACK options are also adopted. More-
over, a hold state is introduced to address persistent fades. The
flow chart of TCP-Peachtree congestion control algorithm is
illustrated in Fig. 4.

A. SACK Scheme

Traditional TCP schemes like TCP-Reno have problems
when multiple packets are lost in a window, the TCP SACK
option is proposed to solve these problems for different appli-
cations [5], [6], [10], [27]. Hoe [14] proposed changes to the
fast retransmit algorithm so that it can quickly recover from
multiple packet losses without waiting unnecessarily for the
timeout. In TCP-Peachtree, TCP SACK options are adopted to
recover multiple packet losses in one RTT.

There are two types of selective ACKs, i.e., positive ACKs
(ACKs) and negative ACKs (NAKs). Upon receiving a packet,
an ACK is sent immediately to the DR. If the DR received all
ACKs for this packet from all its members, an ACK is sent to the
DR in its parent logical group until the sender is reached. While
one or more missing packets are detected by the receiver, a NAK
is sent to the DR for retransmission. If the DR does not have the
missing packets in its buffer, it sends a NAK to its parent logical
group until the NAK reaches the sender.

B. NIL Segments

In TCP-Peach [3], a type of low-priority segments called
dummy segments are used to probe the availability of network
resources. In TCP-Peachtree, we use low-priority segments

Fig. 5. NIL segment generating algorithm.

as NIL segments [4]. There are two main differences between
dummy segments and NIL segments. First, dummy segments are
used only to probe the availability of network resources, while
NIL segments are used to probe the availability of network
resources and also for error recovery. Another difference
is the way how the low-priority segments are generated. In
TCP-Peach, dummy segments are generated by the sender as a
copy of the last transmitted data segment, while NIL segments
are generated using the NIL segment generating algorithm as
shown in Fig. 5 to carry unacknowledged packets, which can
be used by the receivers to recover missing packets. Since the
probability for a packet to be lost somewhere in the satellite
multicast network is rather high, using NIL segments to recover
errors is advantageous.

Low-priority segments are also used in [23] to improve the
performance of TCP slow start Algorithm. However, the low-
priority segments in [23] are different from NIL segments in
that:

• They are not used to probe the availability of network re-
sources. In fact, their objective is to carry information to
the receiver more rapidly without harming other flows.

• Since they carry new information to the receiver, they are
still data segments, and if they are lost, then they must be
recovered.

• They are used only in the beginning of a new connection.
NIL segments are low-priority segments that do not carry

any new information. If a router on the connection path is
congested, then it discards the NIL segments first. Conse-
quently, the transmission of NIL segments does not cause a
decrease of throughput of actual data segments. If the routers
are not congested, then the NIL segments can reach the receiver.
The sender sets one or more of the six reserved bits in the
TCP header to distinguish NIL segments from data segments.
Therefore, the receiver can recognize the NIL segments and for
each of them transmits an ACK back to the sender. The ACKs
for NIL segments are also marked using one or more of the six
reserved bits of the TCP header and are carried by low-priority
IP segments. Upon receiving ACKs for NIL segments, the
sender interprets those ACKs as the evidence that there are
unused resources in the network and accordingly, can increase
its transmission rate. NIL segments are only transmitted when
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Fig. 6. Jump start algorithm.

the sender is in jump start phase or when packet losses are first
found during the quick recovery phase.

Let be the queue length and be a counter, then the NIL
segments are created as shown in Fig. 5.

Upon receiving NIL segments at receivers, they can use them
for error recovery and send a NIL ACK to the DR. The DR
counts the number of ACK’s for a NIL segment, if the percentage
of reception for this NIL segment exceeds a given threshold ,
where , then the DR sends a NIL ACK to the DR
in the parent logical group or to the sender.

C. Jump Start Algorithm

TCP Slow Start algorithm is disadvantageous in networks
with long propagation delays. Several schemes have been pro-
posed to improve the TCP slow start algorithm, TCP fast start
[23] transmits low-priority packets during the fast start phase.
Since these packets carry new information, they must be recov-
ered if they are lost. In TCP-Peach [3], dummy segments, a type
of low-priority segments are used to probe the availability of
network resources. In TCP-Peachtree, NIL segments described
in Section III-B are used to improve the slow start algorithm.
The algorithm is as shown in Fig. 6.

The basic idea of jump start is that in the beginning of a con-
nection the TCP sender sets the congestion window (cwnd) to
1 and after the first data segment, it transmits NIL
segments created as in Section III-B every . For
each received ACK of a data packet or a NIL segment, the con-
gestion window size is increased by one. As a result, after one
RTT, the congestion window size cwnd increases very quickly.
Note that the TCP sender can estimate RTT during the connec-
tion setup phase. Here, RTT is the largest value the sender gets
from the receivers.

D. Quick Recovery Algorithm

The quick recovery substitutes the classical fast recovery al-
gorithm [16] with the objective of recovering multiple losses in
a window and solving the throughput degradation problem due
to link errors. As shown in Fig. 4, when one or more segment
losses are detected by either duplicate SACKs or a NAK, we
use the fast retransmit algorithm presented in [16] to transmit a
missing packet. After completing the fast retransmit algorithm,
we apply the quick recovery algorithm.

Similar to the TCP SACK proposed in [10], quick recovery
maintains a data structure called scoreboard to update informa-
tion about missing packets, and a variable called pipe that repre-
sents the estimated number of packets outstanding in the path.

The variable pipe is incremented by one when the sender ei-
ther sends a new packet or retransmits an old packet. It is decre-
mented by one when the sender receives a duplicate ACK packet
with a SACK option reporting the new data is received at the re-
ceiver. The sender always sends the missing packets first. If no
missing packet exists, the sender sends a new packet. When-
ever a SACK is accepted, the retransmit timer is also reset. The
sender exits quick recovery when a recovery ACK is received
ACKing all data that were outstanding when quick recovery was
entered.

The following variables or parameters, which are used in
quick recovery, are summarized as follows.

• HighAck is the sequence number of the highest cumulative
ACK received at a given point.

• HighData is the highest sequence number transmitted just
before rapid recovery begins.

• A duplicate acknowledgment is defined as an ACK, whose
cumulative ACK number is equal to the current value of
HighAck. It also conveys new SACK information for seg-
ment(s) above HighAck.

• A partial ACK is an ACK that increases the HighAck
value, but does not acknowledge all of the data up to and
including HighData.

• ndupacks is the number of duplicate packets which trig-
gers the TCP-Peachtree to fast retransmit and quick re-
covery phases. This number is assumed to be 3.

• maxburst is a parameter which limits the number of
packets that can be sent in response to a single incoming
ACK, even if the sender’s congestion window would
allow more packets to be sent. maxburst is assumed to be
four as proposed in [10].

• adsn is the number of NIL segments that the TCP sender
is allowed to inject into the network.

• adps is the number of allowed packets to be sent.
• nps is the number of packets actually sent.
• END is used to determine whether the quick recovery

should be terminated.
• nsacked is the number of new packets which are SACKed

by an ACK with the SACK option.
• msacked is the number of packets which are SACKed and

whose SN are larger than HighAck.

As shown in Fig. 7, when packet losses are detected, the quick
recovery behaves conservatively, i.e., the sender halves its con-
gestion window cwnd. Since the original congestion window is

and the sender has received ndupacks SACKs right be-
fore the quick recovery, each of which reports a new data packet
left the pipe. The sender also transmits a loss packet using the
fast retransmit algorithm. Consequently, the variable pipe is ini-
tialized as HighData - HighAck - msacked, i.e, there are High-
Data - HighAck - msacked data packets outstanding in the net-
work. The quick recovery is terminated roughly within one RTT.
NIL segments sent during quick recovery are received in the
congestion avoidance phase and the congestion window cwnd
is increased by one for each NIL ACK. As a result, the number
of allowed NIL segments is set as cwnd so that the congestion
window becomes the original value before the quick recovery
very rapidly.
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Fig. 7. Quick recovery algorithm.

During the quick recovery phase, if a duplicate ACK or par-
tial ACK arrives, pipe is reduced by the number of new packets,
which are SACKed in the ACK. If a NAK is received, which
indicates that a packet left the pipe but is not received correctly,
pipe is also reduced by one and scoreboard is updated to in-
clude the missing packet. If a NIL ACK is received, which indi-
cates that there are still more resources available in the network.
Accordingly, cwnd is increased by one and adsn is reduced by
one. If an ACK that acknowledges all data up to HighData is
received, is set and the quick recovery is terminated.

Whenever an ACK is received, the scoreboard is updated to
keep the latest information about missing packets. The number
of packets which can be sent to the network is (cwnd-pipe).
In order to avoid injecting bursty packets into the network, the
number of packets that can be sent back-to-back is the minimum
of maxburst and (cwnd-pipe). If more data packets are allowed
to be sent, the missing packets are transmitted first. If no missing
packets are needed to be retransmitted, new data packets are
sent. If no data packet is sent, a NIL segment is transmitted as
long as .

In TCP-Peachtree, when a retransmission timeout occurs, the
sender checks whether it has received any ACK for that packet
from any multicast group. If it did receive some ACKs for that
packet from some multicast groups, the timeout is due to link
error. This is based on the fact that no multicast group can re-
ceive a packet if it is lost in the gateway due to congestion. In
this case, the sender retransmits that packet and stays in quick
recovery phase. On the other hand, if there is no ACK for that
packet from any multicast group, the timeout is due to conges-
tion, the sender terminates the quick recovery and executes the
jump start.

Designated Receiver

Receiver

Receivers

Designated Receiver

Designated Receiver

Satellite

Receivers

Designated Receiver

Sender

 Gateway

Receivers

Fig. 8. Logical hierarchical structure for TCP-Peachtree.

E. Hold State

In order to address the persistent fades due to varying weather
patterns, such as rain fades, a hold state is developed in TCP-
Peachtree. The sender receives ACKs for reliability control pur-
poses. If the sender does not receive any ACK from a multicast
group or from all multicast groups for a certain period of time

, it infers this condition as rain fade and goes to the hold state.
In the hold state, the sender first records the current congestion
window cwnd in the variable rf cwnd. Then, it freezes all re-
transmission timers and starts to send probing segments to the
receiver periodically. Upon receiving a probing segment, the DR
in the highest hierarchical level sends an ACK immediately to
the sender to report its current buffer status.

If the sender receives the ACKs for the probing segments,
it infers that the rain fade is over and resumes sending data
packets. If , it goes to the jump start state, oth-
erwise, let . In the latter case, the sender first
transmits rwnd-cwnd NIL segments to probe the available band-
width and then enters the quick recovery state to recover the
missing packets.

IV. PERFORMANCE EVALUATION

We developed our own simulation model. The physical struc-
ture for satellite multicasting is shown in Fig. 1, and the log-
ical hierarchical structure is shown in Fig. 8. The sender sends
packets to the satellite through a gateway, then the satellite mul-
ticasts packets to all receivers. Some receivers may have ter-
restrial connection among them, but not all of them need to be
connected by terrestrial networks. The receivers use the satel-
lite uplink channel as the feedback link to the sender. Since the
GEO satellite network is considered, the RTT values (550 ms)
from the sender to all receivers are approximately the same.

The measured packet loss probability due to link errors
in the channel varies from 10 to 10 . Furthermore, we
assume the gateway buffer length to be 50 segments and

segments. We also assume that the link capacity
is segments/s, which is approximately 10 Mb/s for
TCP segments of 1000 bytes. Moreover, there are 11 unicast
TCP-NewReno connections from the gateway to the receivers.
For those connections, we assume segments.
Also, assume the application is reliable data distribution and
simulation time is 100 s.
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TABLE I
RESULTING LOGICAL HIERARCHICAL GROUPS

FOR N = 200 AND M = 10

Logical hierarchical multicast groups are first discussed in
Section IV-A. In order to illustrate the basic properties of TCP-
Peachtree, i.e., throughput performance, overhead, and fairness
with respect to packet loss rates due to channel errors, we first
assume all receivers have the same packet loss rate, i.e., .
The unbalanced situation where different receivers have dif-
ferent packet loss rates is discussed in Section IV-E. The perfor-
mances for rain fades and bandwidth asymmetry are illustrated
in Sections IV-F and IV-G, respectively. Finally, scalability is
discussed in Section IV-H.

A. Logical Hierarchical Multicast Groups

Logical hierarchical groups are formed using the modified
B tree presented in Section II. The group formation is affected
by the following factors.

• Topology of Receivers: Receivers form clusters and there
is no terrestrial connection among different clusters. Thus,
each cluster forms one or more separate multicast groups.

• RTT Threshold: TRTT is the threshold used when a re-
ceiver selects a DR to join. Assume the RTT value from
a new receiver to a DR is RTT, if , the
new receiver can join that subgroup. If the RTT value from
any DR to the new receiver is larger than , the
new receiver needs to initiate a new multicast group.

• Maximum Number of Members Allowed in a Subgroup:
is the maximum member number allowed in a subgroup.
If the member number in a subgroup is larger than ,
this subgroup is split into two subgroups. After a receiver
leaves a multicast group, if the member number in this
subgroup is smaller than , this subgroup is merged
with a neighboring subgroup to form a new subgroup.

Assume , and all receivers are in one
cluster. The resulting logical hierarchical multicast groups are
shown in Table I.

For a given number of receivers, with TRTT increasing, the
number of groups decreases, but the highest hierarchical level in
a group may increase. If TRTT is too small, there are too many
multicast groups.

Although the RTT value from one receiver to the sender is
already known. Due to logical hierarchical groups, ACKs are
aggregated level by level by the DRs in a group and then sent to
the sender, the actual RTT value for one multicast group to the
sender should be larger than the given RTT value, i.e., the RTT
value for a multicast group should be larger than 550 ms. The
actual RTT values are shown in Fig. 9, where the following is
demonstrated.

• As TRTT increases, the RTT value also increases, thus,
TRTT value should not be very high.

• Usually, if the highest logical hierarchical level increases,
the RTT value also increases, but usually three levels of
hierarchy are sufficient for most multicast cases.
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Fig. 9. Average RTT versus TRTT for N = 200;M = 10, and p = 10 .

TABLE II
RESULTING HIERARCHICAL GROUPS

FOR N = 200 AND TRTT = 30 ms

• The reason why the RTT value increases is that ACKs
need to pass along DRs from low hierarchical level to the
highest hierarchical level. Another reason is local error
recovery discussed in Section II-G, the ACK for a packet
is sent to the sender only after the packet is received by
all receivers in this group, which may also introduce some
delays.

Now, we consider how the value of affects the formation
of the logical hierarchical multicast groups. Let
ms. In a similar way, we get the hierarchical groups as shown in
Table II. Obviously, if decreases, the highest level in a hier-
archical group might increase, which is property of the B tree.

can also affect how many groups are formed. One interesting
observation is that the number of groups formed does not nec-
essarily decrease for increasing .

As shown in Fig. 10, the effect of on RTT value is random
and the variations of RTT are not large.

Obviously, the aggregated RTT value has very limited sensi-
tivity to the parameter . Thus, we can choose sufficiently
large to put more receivers in one group so as to reduce the
number of ACKs from the receivers and retransmissions from
the sender.

B. Throughput Performance

TCP-NewReno [11] is a TCP unicast algorithm, the most
important feature of TCP-NewReno is that it can recover mul-
tiple missing packets in one window of data. TCP-Peachtree
congestion algorithm discussed in Section III is also designed
to recover multiple packets in one window of data. In order
to evaluate TCP-Peachtree congestion algorithms, we use
TCP-NewReno only for congestion control in our simulations
and keep the logical hierarchical groups as we introduced in
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Fig. 10. RTT versus M for N = 200;TRTT = 30 ms, and p = 10 .
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Fig. 11. Throughput performance comparison of TCP-Peachtree and
TCP-NewReno for different values of p for TRTT = 30 ms and M = 10.

Section II. Thus, we can compare the throughput performance
between TCP-Peachtree and TCP-NewReno. For multicast
applications, we assume ms, and

, the resulting throughputs are shown in Fig. 11 for
different values of .

Fig. 11 shows that the throughput performance of
TCP-Peachtree is much better than the TCP-NewReno,
especially when is large, i.e., TCP-Peachtree is more suitable
for reliable satellite multicasting. The reasons are obvious.

• In satellite IP multicasting, due to the loss path multiplicity
problem, the aggregated link error probability is rather
high.

• Using the jump start algorithm, TCP-Peachtree can reach
much faster than the TCP-NewReno, which uses the

slow start algorithm. It is a critical factor in satellite IP net-
works [2], because the RTT value in satellite IP networks
is rather high.

• NIL segments are used to exploit the network resources
and also to recover lost packets on the receiver side. Due to
the loss path multiplicity problem, if the receiver number
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Fig. 12. Overhead versus p for TRTT = 30 ms and M = 10.

is large, NIL recovery can have a high advantage over the
TCP-NewReno.

• In quick recovery, the information contained in the
SACK option is used to improve the performance of
TCP-Peachtree.

More detailed performance comparisons of the proposed con-
gestion scheme and other TCP protocols can be found in [1] and
[4].

C. Overhead

In TCP-Peachtree, overhead as shown in Fig. 12 is introduced
by NIL segments sent during jump start and quick recovery
states. The overhead is measured by dividing the number of NIL
segments by the number of total segments sent at the sender.

In general, the overhead decreases with decreasing from
10 to 10 . For and 10 , the overhead
is maximum at 29%. The reason for high overhead is that the
aggregated link error probability is very large at this point and
the loss path multiplicity problem makes it worse. Considering
these factors, the overhead here is reasonable. Moreover, the
practical channel conditions are below 10 , where the
overhead drops below 10%.

D. Fairness to Unicast TCP Traffic

Usually, the TCP multicast traffic must coexist with other ex-
isting TCP unicast traffic. This also applies to satellite IP net-
works. In order not to overtake bandwidth and starve the unicast
traffic, TCP-Peachtree should be fair to unicast traffic.

As described in [25], the fairness index, based on throughput
for a bottleneck link is defined as

(10)

where is the throughput of the th flow, and is the
number of flows sharing the resource. FI always lies between

(indicating one of them gets all the bandwidth and all
others starve) and 1 (indicating all get an equal share of the
bandwidth). Assume there are 11 TCP-NewReno unicast con-
nections from the gateway to the receivers with ,
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Fig. 13. Fairness versus p for TRTT = 30 ms andM = 10.

they compete for the bandwidth with TCP-Peachtree. The re-
sulting fairness is shown in Fig. 13.

For 10 , the fairness is not good. However, it does
not mean that the TCP-Peachtree is unfair to the unicast TCP-
NewReno traffic. As the link error probability is very large, the
TCP-NewReno cannot fully utilize the bandwidth, while TCP-
Peachtree can utilize the bandwidth more efficiently. The reason
for the result is based on the fact that the bandwidth is not fully
utilized by TCP-NewReno at this moment.

For decreasing , the fairness also increases. For 10 ,
fairness becomes larger than 0.9. Moreover, fairness keeps
increasing with decreasing and eventually it reaches one. As
a result, the TCP-Peachtree is fair to TCP unicast traffic. The
reason is that TCP-Peachtree only uses NIL segments to probe
the network resources. When congestion occurs, NIL segments
are usually dropped first. Consequently, TCP-Peachtree in-
creases its sending rate much slower. In the worst case, it acts
very similar to the TCP-NewReno.

E. Unbalanced Situation

For practical satellite multicast applications, different re-
ceivers may experience different channel conditions, thus, they
may have different packet loss rates due to channel errors.
Assume that the packet loss rate due to channel errors for
receiver is randomly chosen in the range of to . Here,
is chosen as 10 and increases from 10 to 10 , the
throughput performance with respect to is shown in Fig. 14.
The throughput of the balanced situation, i.e., all , is also
shown in Fig. 14.

The throughput for the unbalanced situation is always higher
than that for the balanced situation. Obviously, the throughput
difference is quite small when is close to , i.e., 10 , but it
increases when increases from 10 to 10 and it reaches
the highest value at 10 . The reason is that local error
recovery is very helpful to recover lost packets for the unbal-
anced situation. However, the throughput difference drops dra-
matically at 10 . This is because most receivers are in
worse channel conditions and local error recovery is not efficient
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Fig. 14. Throughput comparison for balanced and unbalanced packet loss
rates.
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in such situations, thus, the throughput performance is degraded
greatly.

F. Rain Fade

Assume rain fades last for a short duration of not more than
60 s similar to the assumption made in [18] and rain fade occurs
at time s. The timeout threshold for detecting rain
fades is chosen to be the same as the retransmission timeout
threshold. The sender may go to the jump start state before it
can infer rain fade, thus, it always records the current conges-
tion window cwnd into the variable rf cwnd before it goes to the
jump start state. During the hold state, the sender stops sending
any data packets and freezes all retransmission timers to avoid
unnecessary transmission. However, it sends probing packets
periodically to detect when rain fade is over. To investigate the
performance improvement by the hold state, we also consider
TCP-Peachtree without the hold state, where the sender keeps
going into the jump start state when the transmission timer ex-
pires. The throughput performance for TCP-Peachtree with and
without the hold state is shown in Fig. 15.
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The throughput with the hold state is always higher than that
without the hold state and the throughput difference is approxi-
mately constant for different rain fade periods. The reasons that
TCP-Peachtree with the hold state achieves higher throughput
are as follows.

• In the hold state, the sender uses probing segments to ob-
tain the exact information about rain fade. On the other
hand, for TCP-Peachtree without the hold state, the sender
has to wait for the retransmission timer to expire and then
goes to the jump start state to send packets to the receiver.

• The sender records its current congestion window when
rain fade occurs and keeps this congestion window after
rain fade is over. While for TCP-Peachtree without the
hold state, the sender always goes to the jump start state
and the congestion window is set to one.

G. Bandwidth Asymmetry

Since the feedback link capacity is usually very low for
satellite networks, the delayed SACK scheme discussed in
Section II-F is adopted to address the bandwidth asymmetry
problem, i.e., the DR in the highest level sends one SACK for
a given number of received data packets. This number is called
the delay factor. We investigate three cases of the bandwidth
asymmetry problems, i.e., the feedback link bandwidth is
1 Mb/s, 100 kb/s, and 64 kb/s, respectively. Also, assume the
link capacity from the sender to the receivers is 10 Mb/s. The
throughput performance with respect to different delay factors
is shown in Fig. 16.

When the feedback link bandwidth is 1 Mb/s, the throughput
performance is not degraded for this bandwidth asymmetry
ratio. The reason is that the ACK size is usually about 40 Bytes,
which is much smaller than the data packet size 1 kB, thus, the
feedback link is not congested. However, the throughput perfor-
mance decreases with increasing bandwidth asymmetry ratio.
For example, the throughput drops to 73.81 from 103.31 when
the feedback link bandwidth is 100 kb/s and the delayed SACK
scheme is not used. The throughput increases with increasing
delay factor and reaches the highest value when delay factor is
three, which is close to the throughput for 1 Mb/s. Since TCP
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Fig. 17. Scalability for TRTT = 30 ms andM = 10.

relies on the ACK clock to transmit packets, the delay factor
can not be too large, thus, the throughput performance can
be degraded for very high bandwidth asymmetry ratios. For
example, the throughput decreases approximately 20% when
the feedback link bandwidth is 64 kb/s and the delay factor is 4.

H. Scalability

Scalability is one of the most important metrics of IP mul-
ticast schemes. Usually, scalability is measured by the perfor-
mance over different numbers of receivers in a multicast session.
Schemes with good scalability can be applied to very large size
of receivers. Here, we use throughput as the performance mea-
surement. For ms and , the resulting scal-
ability is shown in Fig. 17, where we observe that the throughput
is constant and does not decrease with increasing from 50 to
1000. We can conclude that TCP-Peachtree has good scalability.
The reasons are based on the facts.

• The acknowledgment implosion problem is solved by the
ACK fusion procedure performed by the DRs of the hier-
archical multicast groups and the sender.

• The loss path multiplicity problem can be solved by local
error recovery and NIL recovery.

• The congestion control algorithm in TCP-Peachtree can
recover multiple packet losses in one window of data so
that TCP-Peachtree is very suitable to work in applications
with high packet loss rates due to link errors.

V. CONCLUSION

In this paper, the TCP-Peachtree is proposed for reliable mul-
ticast in satellite IP networks. TCP-Peachtree uses a modified
B tree-like hierarchical multicast group to solve the acknowl-
edgment implosion and scalability problems in reliable IP mul-
ticast applications. Two new congestion control algorithms are
also presented, i.e., jump start, and quick recovery, so that TCP-
Peachtree is suitable for satellite IP networks with long propa-
gation delays and high BERs. NIL segments are used to exploit
the availability of network resources and recover lost packets
on receiver side. The delayed SACK scheme is adopted to ad-
dress the bandwidth asymmetry problems. Furthermore, a hold
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state is developed to address persistent fades. Simulation results
show that the congestion control algorithms in TCP-Peachtree
perform better than that of the TCP-NewReno and improve the
throughput performance during rain fades. It is also shown that
TCP-Peachtree achieves fairness and also has high scalability.
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