
DIMRO, a DiffServ-Integrated Multicast algorithm for Internet Resource
Optimization in source specific multicast applications

Dario Pompili*, Luca Lopez**, Caterina Scoglio*
* Broadband and Wireless Networking Laboratory

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332

** Dipartimento di Informatica e Sistemistica
University “La Sapienza” of Rome, Italy, 00184

e-mail: {dario,caterina}@ece.gatech.edu

Abstract— In this work DIMRO, an efficient algorithm to build
source specific multicast trees, is presented. DIMRO aims at
achieving a high traffic balance in the network in order to
avoid bandwidth bottlenecks and consequent network partitions,
one of the main causes for low network performance. To do
so, it computes multicast trees by dynamically selecting the
least loaded available paths, obtaining an optimal distribution
of network resources. Strictly integrated with the DiffServ
Quality of Service (QoS) approach, the proposed multirate native
multicast algorithm maps the QoS service requested by receivers
into the proper DiffServ class, so as to respect the expected QoS
requirements. The results are a better leverage of the network
bandwidth resources, an improved QoS perceived by multicast
group members, and time and resource saving due to its low
computational complexity, as shown through extensive C++ based
simulation campaign.

Index Terms— Multirate Multicast, Mathematical Program-
ming/Optimization, DiffServ Networks.

I. INTRODUCTION AND BACKGROUND

IN unicast transmissions the sender transmits data to a single
receiver and, if multiple receivers want to receive the same

data content, the sender has to transmit multiple copies of data.
In multicast transmission, differently, the sender transmits only
one copy of data that is delivered to multiple receivers. One of
the most challenging objective in multicasting is to minimize
the amount of network resources employed to compute and
setup multicast trees [1][2]. In multicast communication the
routing problem is to find the minimum-weight tree that spans
all the nodes in the multicast group [3][4].

In source specific multicast communications only one node
in the multicast group sends data while all the other member
nodes receive data. A tree that spans all member nodes is said
multicast tree. A source rooted tree has the source node as root
and is optimized for source specific multicast communications.

The classical optimization problem in multicast routing is
the Steiner tree problem in networks (SPN) [5] whose objective
is to find the least-cost tree connecting the source with the
group of destinations with the minimum total cost over all
links. If each destination has a bandwidth requirement, then
the problem is to find the least-cost tree that respects the
bandwidth requirements on each path from the source to the
receiver. Since both these two problems are NP-complete,
efficient algorithms to solve these problems in polynomial time
attain only approximate solution [4][5].

In source specific communications, multicast sessions may
have a large number of receivers with heterogeneous reception
capacities. To accommodate this heterogeneity, a layering
scheme can be used [6][7]. In a layering scheme, data transmis-
sion through the network takes place over logical channels. A
sender can simultaneously transmit data on multiple channels
and a receiver can receive data from multiple channels. Each
channel has its own transmission rate, usually computed at the
sender side. Receivers subscribe to the layers cumulatively,
receiving data at a cumulative rate.

The proposed multicast algorithm is called DiffServ-
Integrated Multicast algorithm for Internet Resource Opti-
mization (DIMRO) and builds source rooted multicast trees
for source specific applications. DIMRO takes into account the
network link available bandwidth in order to avoid bandwidth
bottlenecks in the network. The idea is to keep low the average
link traffic utilization by fairly distributing data flows among
those least loaded links. The DIMRO algorithm is integrated
with the DiffServ Quality of Service (QoS) approach [8][9].
The QoS service requested by receivers, mapped into the
proper DiffServ class, is taken into account in the multicast
tree computation. DIMRO allows members with less stringent
QoS requirements to reuse resources already exploited by
members with more stringent QoS requirements. Simulation
results show a better leverage of the network bandwidth
resources, an improved QoS perceived by multicast group
members with respect to the performance of existing multicast
algorithms, and a resource saving due to low computational
complexity which dramatically characterizes the algorithm.

The main innovative features in this work are:
• seamlessly integration of DiffServ Quality of Service

approach in the proposed multicast algorithms;
• leverage of the network bandwidth resources and an

improved QoS perceived by multicast group members;
• low computational complexity which effectively leads to

time and resource saving.
The remainder of the paper is organized as follows.
In Section II DIMRO, the proposed multicast algorithm

for source specific applications in both non-QoS-aware (II-
A) and QoS-aware (II-B) networks is presented. In Section
III we show numerical results through an extensive simulation
campaign ran on an ad-hoc C++ simulator. Finally, in Section
IV we conclude the paper.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1146

II. DIMRO - DIFFSERV-INTEGRATED MULTICAST

ALGORITHM FOR INTERNET RESOURCE OPTIMIZATION

DIMRO focuses on the problem of bandwidth bottlenecks,
one of the main reasons for low network performance. The
multicast source rooted tree is built by choosing those paths
that result least loaded to obtain a smooth load balancing in
order to achieve an optimal distribution of network resources
and thus maximize the number of constructed multicast trees.

A. DIMRO in non-QoS-aware networks

Let us consider a multirate multicast scenario where re-
ceivers ask for different rates [6][7]. If K channels with
rate {w1, . . . , wK} are used in the layering scheme, then K
cumulative rate L1, . . . , LK are available.

The DIMRO algorithm proceeds as it follows.
Let s be the source node and let us suppose that the

multicast group is made up of M receivers.

• Step 0:
receivers are ordered from the highest rate to the lowest
one. At the end of this step we have an ordered set of
M receivers {r1, . . . , rM}, with demanded cumulative
rates F1 ≥ F2 ≥ . . . ≥ FM (Fj ∈ {L1, . . . , LK},
j = 1, . . . ,M). Receivers from r1 to rM are connected
to the source node progressively. In this way, receiver
ri can reuse resources already exploited on paths from
the source to receivers r1, . . . , ri−1. These receivers,
in fact, ask for rates F1 ≥ F2 ≥ . . . ≥ Fi−1 ≥ Fi. Let
Spath(s, rk) be the set of all feasible paths from s to rk.
A path p(s, rk) from source s to receiver rk is feasible
if buv ≥ Fk for all its links, where buv is the available
bandwidth in link (u, v).

• Step k, k = 1, . . . ,M :
the algorithm chooses the path p(s, rk) ∈ Spath(s, rk)
that minimizes the following function:

f{p(s, rk)} =
∑

{(u,v)∈p(s,rk)}

auv

(1 − ρuv)α
,

p(s, rk) ∈ Spath(s, rk) (1)

1) ρuv is the link (u, v) utilization and it is defined as:

ρuv =
Buv − (buv − Fk)

Buv
=

Buv − βuv

Buv
(2)

where Buv is the total bandwidth capacity of link
(u, v), Fk is the bandwidth exploited on link (u, v)
by receiver rk and βuv = buv − Fk is the residual
bandwidth of link (u, v).

2) The exponent α = α(|V |, |E|, F ,B) in eq. 1 is a
function of the number of nodes |V |, the number of
links |E|, the average rate F demanded by receivers
and the average network link bandwidth B. Accord-
ing to accurate empirical observations (described
hereafter) supported by extensive simulation results,
the exponent α in eq. 1 has been chosen as:

α(|V |, |E|, F ,B) =
= a · exp

{
−b · |E|

|V |·(|V |−1)

}
· exp

{
−c · F

B

}
(3)

Coefficients a, b, c have been determined by solving
the following minimization problem of the quadratic
error between the exponent model in eq. 3 and the
experimental results:

min
N∑

i=1

[αi − α(|V |i, |E|i, F i, Bi)]2

a ∈ [0, 3], b ∈ [0,+∞] (4)

Starting from a set of points Γ =
{(|V |i, |E|i, F i, Bi), i = 1, . . . , N}, the optimum
exponent αi was experimentally obtained for each
point (|V |i, |E|i, F i, Bi) ∈ Γ of the set.
The coefficient α has been chosen belonging to
the interval [0, 3] after an accurate tuning of the
model. Optimal values of a, b, c of the minimization
problem (4) are a = 3, b = 3.9 and c = 16.9.
Let us now come back to eq. 3 to justify why the
variable aggregations F/B and |E|/(|V |(|V |−1)),
are suitable to model the exponent in eq. 1.
By decreasing the value of α, the length of paths
found by DIMRO is reduced because the difference
between the metric of loaded links and the metric of
unloaded links is reduced. It could be necessary to
reduce the length of paths used by the multicast tree
when the average rate F demanded by the receivers
grows or when the average network bandwidth B
decreases. In fact, the higher the value of F , or the
lower the value of B, the more resources on each
link are consumed by a single path. Thus, short
paths have to be preferred. Simulations show that
at the growing of the ratio F/B the value of the
optimal exponent α decreases exponentially.
As far as concern the number of nodes |V | and links
|E|, if |E| decreases, less paths are available and
the resource utilization becomes a more sensitive
issue. By increasing the value of the exponent α,
the difference between the metric of loaded links
and unloaded links increases. If the number of nodes
|V | grows but the number of links |E| remains the
same, the exponent increases because the number
of paths decreases. Simulations show that at the
decreasing of the ratio |E|/(|V |(|V |−1)) the value
of the optimal exponent α grows exponentially.

3) The binary variable auv is equal to zero if link (u, v)
already belongs to the tree, otherwise it is 1.
If the set Spath(s, rk) is not empty, let p(s, rk) be
the path from the source s to the receiver rk that
minimizes the function in eq. 1. On each link (u, v)
belonging to p(s, rk), if auv = 0, the value of the
available bandwidth is not updated and uses those
bandwidth resources already exploited by a path
p(s, rj), with Fj ≥ Fk. Conversely, if auv �= 0,
then new resources must be consumed and the new
value of the available bandwidth is b

′
uv = buv −Fk.

Then the binary variable auv is set to zero in order
not to consider the cost of link (u, v) for those future
paths which will exploit it.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1147

Let us point out that at Step k, k = 1, . . . , M , the optimal
path p(s, rk) ∈ Spath(s, rk) can be found using a shortest path
algorithm (as Dijkstra or Bellman-Ford algorithm), where the
length of each link in the network is set to:

duv =
{ auv

(1−ρuv)α if buv ≥ Fk

∞ if buv < Fk or (u, v) /∈ E
(5)

DIMRO uses the Bellman-Ford algorithm which finds a span-
ning tree of the shortest paths from the source node s to all
other nodes of the graph [10]. The path p(s, n) from node s
to node n, solution of eq. 1, is the one that minimizes the
function: ∑

{(u,v)∈p(s,n)}
duv (6)

Computational complexity: if the number of receivers
is M , the DIMRO algorithm builds the multicast tree by
computing for as many as M times the spanning tree, using
the Bellman-Ford algorithm. Since the time complexity of the
Bellman-Ford algorithm is O(|V | · |E|), then the computa-
tional complexity of the algorithm is O(M · |V | · |E|).

B. DIMRO in DiffServ aware networks

In this section the DIMRO algorithm is integrated in a Diff-
Serv network. Let us consider a multirate multicast scenario
where receivers ask for the same data content but different
rates and different qualities of service (QoS), mapped into
the respective service class according to [8][9]. In particular
DIMRO can build source rooted tree for both real time multi-
cast communications, by adopting the Expedited Forwarding
(EF) DiffServ service class, and non real time communica-
tions, by adopting the Assured Forwarding (AS) DiffServ ser-
vice class. DIMRO, integrated in a DiffServ network, allows a
receiver to reuse the bandwidth already exploited by receivers
asking for higher service classes without any extra cost for the
network. By building a path from the source s to a receiver
r, the DIMRO algorithm can reuse some sub-paths already
exploited by higher service class receivers. Thus receiver r
obtains a better QoS and the network saves resources because
bandwidth already exploited by other receivers is reused for
receiver r.

DIMRO in a DiffServ network proceeds as it follows.

• Step 0:
receivers are ordered according to their service class and
rate. Let us consider a set R made up of M receivers.
Let CL = {cl1, . . . , clL} be the set of service classes
demanded by receivers, where cl1 is the highest service
class and clL is the lowest one. CL is a subset of all
service classes supported by the DiffServ architecture
[8][9].
The set of receivers R is partitioned into L = |CL|
subsets:

R =
L⋃

i=1

Ri (7)

Subset Ri is made up of those receivers asking for service
class cli, i = 1, . . . , L. Receivers in each subset Ri, are
ordered from the highest rate to the lowest one. Let us

consider a partitioned and ordered set R made up of M
receivers. Let ri

k be the receiver k in the subset Ri with
demanded rate F i

k. |Ri| will stand for the cardinality of
Ri, and i will represents the associated service class.

• Step j, j = 1, . . . , L:
DIMRO connects the source s with all those receivers
asking for service class cli. At the beginning of these
steps, the binary variables auv are set to 1 for each
network link (u, v). For receiver ri

k, k = 1, . . . , |Ri|, auv

are set to zero for all those links (u, v) already used by
receivers that ask for higher service class and higher or
equal rate then ri

k. In fact, resources already exploited by
the tree on these links could be used by ri

k without any
extra cost.

Let buv(cli) be the available bandwidth of link (u, v) for the
service class cli. A path p(s, ri

k) from source s to a receiver
ri
k asking for cumulative rate F i

k is feasible if buv(cli) ≥ F i
k

for all its links. DIMRO algorithm chooses that feasible path
p(s, ri

k) from s to ri
k that minimizes the function:

f{p(s, ri
k)} =

∑
{(u,v)∈p(s,ri

k)}

auv

(1 − ρuv(cli))α
,

p(s, ri
k) ∈ Spath(s, ri

k) (8)

where Spath(s, ri
k) is the set of all feasible paths from s to ri

k.
Exponent α is defined as in eq. 3 and the utilization ρuv(cli)
of the link (u, v) is calculated as follows:

ρuv =
Buv(cli) − [buv(cli) − F i

k]
Buv(cli)

(9)

where Buv(cli) is the total bandwidth capacity of link (u, v)
for service class cli and F i

k is the cumulative rate of ri
k.

For each link (u, v) belonging to path p(s, ri
k), if auv =

0 then the available bandwidth buv(cli) is not updated and
the new path uses those resources already exploited by other
receivers. On the contrary, if auv �= 0, then new resources have
to be exploited and the new value of the available bandwidth
becomes b

′
uv(cli) = buv(cli) − F i

k. Then the binary variable
auv is set to zero.

The DIMRO algorithm determines the path p(s, ri
k) by

using a modified shortest-path algorithm. Common shortest
path algorithms could choose one of those possible paths with
zero cost from s to n, but p(s, ri

k) might not be correct. To
determine a correct path the algorithm proceeds as it follows.

Starting from node s, the first link (ũ, ṽ) belonging to
p(s, ri

k) with auv �= 0 is found. Among all those paths in
the tree exploiting a bandwidth equal or greater than F i

k and
passing through node ũ, it is chosen the one which uses the
highest service class. Let us indicate this path with p̃ũ. The
new path p̃(s, ri

k) from s to ri
k is the concatenation of the sub-

path from s to node ũ, belonging to path p̃ũ, and the sub-path
from node ũ to ri

k, belonging to p(s, ri
k).

III. SIMULATION RESULTS

A. Random network model

To ensure a fairly evaluation of different routing algorithms,
a random network has been generated according to the Wax-
man’s model [11][12].

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1148

In the Waxman’s model network, nodes are randomly dis-
tributed across a Cartesian coordinate grid. Links are added
to the graph by considering all possible pairs (u, v) of nodes
and by using the probability function:

Pe(u, v) = β · exp
(
− duv

α · L
)

(10)

where Pe(u, v) is the existence probability of a link between
nodes u and v, duv is the Euclidean distance between the node
u and the node v, L is the maximum possible distance between
a pair of nodes, α and β are parameters belonging to the range
(0,1]. A high α value increases the number of connections to
nodes further away, while a high β value increases the node
degree.

Unlike the original Waxman’s model, we suppose that each
link added to the network is bi-directional. The bandwidth
capacity Buv of each link (u, v) is randomly generated using
an uniform distribution with mean bandwidth B. The link
(u, v) bandwidth capacity Buv might be different from the
link (v, u) bandwidth capacity Bvu.

In this work, two different one hundred node random
networks are generated. Network 1 uses α = 0.2 and β = 0.4,
while Network 2 uses α = 0.3 and β = 0.6. Network 2
has a higher number of links than Network 1, according to
the probability function (10). The average bandwidth in both
networks is B = 100Mbps.

B. DIMRO Performance Evaluation

In this section DIMRO is compared to the optimal solution
of the Steiner tree problem when all link costs are equal to
one. If every links have a cost equal to one, then the minimum-
weight tree that spans all group members is the multicast
tree that uses the least amount of network resources. The
minimum-weight tree is found by solving the flow formulation
of the Steiner tree problem proposed by Claus & Maculan [13]
and Wong [3]. We further implemented the ILP problem in
AMPL [14] and solved it with the CPLEX [15] solver.

Starting from a completely unloaded Waxman network [11],
it is requested to build a fixed number of source rooted
trees, the Number of Requested Trees. Multicast groups are
sequentially randomly generated. Multicast group members
(source and receivers) are randomly chosen among network
nodes. The number of receivers for each multicast group
is uniformly distributed from 5 to 15 and the bandwidth
request of each receiver is uniformly distributed from 0.1 to
2 Mbps. For each simulation several runs have been done to
ensure a sufficient small trust region and short 95% confidence
intervals.

To evaluate the performance of DIMRO and the optimal
solution of the Steiner tree problem with unitary costs in the
different simulated scenarios, we will use two metrics, the
Rejection Rate and the Network Load.

1) The Rejection Rate is defined as:

Rejection Rate =
Number of Rejected Trees

Number of Requested Trees
(11)

where the Number of Requested Trees is the total number
of source rooted trees sequentially generated, while the

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

5

10

15

20

25

30

35

40
DIMRO and OSTP Rejection Rate in Network 1

Number of Requested Trees

R
ej

ec
tio

n
R

at
e

[%
]

DIMRO
OSTF

(a)

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
20

25

30

35

40

45

50

55

60

65

70

75
DIMRO and OSTP Network Load in Network 1

Number of Requested Trees

N
et

w
or

k
Lo

ad
 [%

]

DIMRO
OSTF

(b)

Fig. 1. DIMRO and OSTP Rejection Rate and Network Load in Network 1

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10
4

0

5

10

15

20

25

30

35
DIMRO and OSTP Rejection Rate in Network 2

Number of Requested Trees

R
ej

ec
tio

n
R

at
e

[%
]

DIMRO
OSTF

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10
4

45

50

55

60

65

70

75

80

85

90

95
DIMRO and OSTP Network Load in Network 2

Number of Requested Trees

N
et

w
or

k
Lo

ad
 [%

]

DIMRO
OSTF

(b)

Fig. 2. DIMRO and OSTP Rejection Rate and Network Load in Network 2

Number of Rejected Trees is the number of requested
source rooted trees that cannot be built because there
are not enough resources in the network.

2) The Network Load ρ is defined as:

ρ =

∑
{(u,v)∈E} ρuv

|E| (12)

where E is the set of network links, |E| its cardinality
and ρuv is the Link Load of link (u, v), defined as:

ρuv =
Used Bandwidth of link (u,v)

Bandwidth Capacity of link (u,v)
(13)

Fig. 1(a) shows that the DIMRO Rejection Rate in Network
1 is lower than the Rejection Rate of the Optimal solution of
the Steiner Tree Problem (OSTP) with cuv = 1. The Rejection
Rate is approximately the same until the Number of Requested
Trees is less than 2500. When the Number of Requested Trees
overcomes this threshold, the DIMRO algorithm has a lower
Rejection Rate. Both DIMRO and OSTP Rejection Rates grow
at the growing of the Number of Requested Trees because
the same bottlenecks occur. These bottlenecks depend on the
network topology and cannot be avoided, but the DIMRO
Rejection Rate is lower because bottlenecks occur later. Fig.
1(b) shows that the DIMRO Network Load is lightly lower
than the OSTP Network Load until the Rejection Rate is the
same. Then, since DIMRO rejects less trees, its Network Load
is higher than the OSTP one.

Network 2 has a higher number of links than Network 1,
according to the probability function (10) and the used network
parameters. In this second type of network, the DIMRO
Rejection Rate is significantly lower than the OSTP Rejection
Rate (Fig. 2(a)). This is because less unavoidable bottlenecks

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1149

A B C D
0

10

20

30

40

Service Class

N
um

be
r

of

R

ec
ei

ve
rs

 #
 1

0

A B C D
0

10

20

30

40

N
um

be
r

of

R

ec
ei

ve
rs

 #
 2

0

A B C D
0

10

20

30

40

N
um

be
r

of

R
ec

ei
ve

rs
 #

 3
0

DiffServ integrated
Non DiffServ−integrated

Service Class

Service Class

N
et

w
or

k
Lo

ad
 [%

]

Fig. 3. DIMRO Network Load of DiffServ classes

exist. An unavoidable bottleneck is a bottleneck that depends
on the network topology and not on the algorithm used in
the network. For example, if only one path exists between
two nodes, all communications between this two nodes must
use this path. Since Network 2 has a higher number of links,
the number of possible paths from two nodes grows, and it
is easier for the DIMRO algorithm to avoid bottlenecks. A
lower Network Load (Fig. 1(b) and Fig. 2(b)) with a higher
Rejection Rate (Fig. 1(a) and Fig. 2(a)) proves that OSTP
does not use efficiently network resources. In fact, bottlenecks
degrade network performances and not all available resources
can be exploited.

C. DiffServ DIMRO Performance Evaluation

In this section we compare the performance of the DIMRO
algorithm integrated in a DiffServ network with the simple
case, not DiffServ integrated, in which a receiver cannot reuse
the bandwidth exploited by another group receiver with more
stringent QoS requirements.

Since we need to generate a DiffServ network, we will
consider the bandwidth capacity of a link for each service
class. Let us consider a simple DiffServ network with only four
service classes that we indicate with A, B, C, D, where A is
the highest service class and D is the lowest one. Let Buv(cl)
be the bandwidth capacity of link (u, v) for each service class
cl. The bandwidth capacity Buv(cl) for each service class
on link (u, v) is randomly generated by using an uniform
distribution with mean bandwidth B(cl). For this simulation
campaign, a one hundred node network has been randomly
generated, with parameters α = 0.2 and β = 0.4. The link
bandwidth capacity for each service class cl ∈ {A, B, C, D}
is uniformly distributed with mean bandwidth B(cl) equal to
25 Mbps for each service class. We consider the Network Load
as defined in (12) of each service class when fifty source rooted
trees, randomly generated, are built by the DIMRO algorithm.
Each receiver asks for a rate uniformly distributed in the range
[0.1, 2] Mbps, and a service class randomly selected within
the set {A,B,C,D}.

For each simulation several runs have been done to ensure a
sufficient small trust region and low 95% confidence intervals.
Fig.3 shows that DiffServ integrated DIMRO performs better
than its non integrated version. Furthermore, the Network

Load decreases with the service class. In particular, the lowest
service class D has the lowest Network Load because D class
receivers can reuse bandwidth already exploited by all other
receivers. DiffServ integrated DIMRO performs better than its
non QoS-aware version, and this gets evident at the growing of
the number of receivers. Fig. 3 shows that for 30 receivers the
Network Load for service classes B, C and D is significantly
lower then the Network Load relative to these service classes
when DIMRO is not DiffServ integrated (the Network Load
is reduced respectively by 23%, 33% and 40%).

IV. CONCLUSIONS

The presented multicast algorithm aims to effectively avoid
bandwidth bottlenecks and to achieve an efficient distribu-
tion of link loads in the source routed tree computation.
Seamlessly integrated into the DiffServ Quality of Service
approach, DIMRO efficiently manages to address the net-
work partition problem, one of the main reason for low
performance in a network, thus increasing the number of
multicast communications, as it has been described and tested
in an integrated DiffServ aware network through extensive
C++ based simulations. The simulation results show a better
leverage of the network bandwidth resources, an improved
QoS perceived by multicast group members with respect to the
performance of existing multicast algorithms, and a time and
resource saving due to low computational complexity which
dramatically characterizes the algorithm.

REFERENCES

[1] L. H. Sahasrabuddhe and B. Mukherjee, “Multicast Routing Algorithms
and Protocols: A Tutorial,” IEEE Network, Jennary/February 2000.

[2] J. L. Gross and J. Yellen, “Handbook of Graph Theory,” CRC Press,
Discrete Mathematics and Its Applications, Volume: 25, Series Editor
K. H. Rosen, 2003

[3] R. T. Wong, “A dual ascent approach for Steiner tree problems on a
directed graph,” Mathematical Programming, 28:271-287, 1984.

[4] H. Takahashi and A. Matsuyama, “An approximate solution for the
Steiner problem in graphs,” Math. Japonica 6, (1980) 573-577.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network Flows: Theory,
Algorithms, and Applications, ” Prentice Hall, February 1993.

[6] Bhattacharyya, Kurose, and Towsley, “Efficient Multicast Flow Control
using Multiple Multicast Groups,” CMPSCI Technical Report TR 97-15,
March 10 1997.

[7] Y. Birk and D. Crupnicoff, “A Multicast Transmission Schedule for
Scalable Multi-Rate Distribution of Bulk Data using Non-Scalable
Erasure-correcting Codes,” IEEE Infocom 2003.

[8] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,”
RFC 2474, December 1998.

[9] S. Blake , D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475, December 1998.

[10] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves, “A
loop-free Bellman-Ford routing protocol without bouncing effect”, in
ACM Sigcomm ’89, pages 224–237, September 1989.

[11] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Selected
Areas Commun. 6(9) (1988) 1617-1622.

[12] K. Calvert, M. Doar, and E. Zegura, “Modeling Internet Topology,” IEEE
Communications Magazine, June 1997.

[13] A. Claus and N. Maculan, “Une nouvelle formulation du Probleme de
Steiner sur un graphe,” Technical Report 280, Centre de Recerche sur
les Transports, Universite de Montreal, 1983.

[14] R. Fourer, D. M. Gay, and B. W. Kernighan “AMPL: A Modeling Lan-
guage for Mathematical Programming,” Duxbury Press / Brooks/Cole
Publishing Company, 2002.

[15] www.cplex.com

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1150

	footer1:

