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Abstract—In this paper, a new approach to dimensioning DiffServ/MPLS
networks taking into account per-class bandwidth reservation and fault tol-
erance cushion weights is proposed. Our dimensioning algorithm is based
on Lagrange relaxation and it uses a bandwidth constraint model in order
to provide per-class bandwidth reservation, and link costs which translate to
backup LSP cushion weights. We propose an optimization formulation for
our policy and also a polynomial time heuristic capable of approximating
the optimal results. Besides a-priori dimensioning, a modified version of our
dimensioning policy can also be run weekly/monthly in order to redimen-
sion LSPs according to the stored traffic history. Both proposed heuristics
have polynomial complexity and provide bounds on the value of the optimal
objective function, which can be used to evaluate the accuracy of the results.

I. INTRODUCTION

The dimensioning of an Multiprotocol Label Switching
(MPLS) network includes the assignment of bandwidth re-
sources to a set of pre-selected Label Switched Paths (LSPs) and
mapping the same onto a physical network of links with capac-
ity constraints. The dimensioning process also determines the
link capacity thresholds associated with the use of some band-
width reservation scheme for service protection. Service protec-
tion controls the Quality of Service (QoS) provided for certain
service types by restricting access to bandwidth, or by giving pri-
ority access to one type of traffic over another. Such methods are
essential to prevent starvation of low-priority flows, to guarantee
a minimum amount of resources for flows with short duration, to
improve the probability of acceptance for flows with high band-
width requirements, to maintain network stability by preventing
performance degradation in case of a local overload, etc. [1].

Another important aspect to be considered in MPLS networks
dimensioning is fault tolerance. Besides Traffic Engineering,
traffic protection is another major advantage of using MPLS. In
pure IP networks, each failure has to be flooded by the Internet
Gateway Protocol (IGP) through the whole network. After the
IGP has converged, new shortest paths can be calculated and the
failure is repaired. Failure to properly capacity plan a network
will lead to congestion.

Previous work, such as NetScope [2] and RATES [3] try to
automate network configuration in order to maximize the utiliza-
tion. The first one estimates the demands using measurements
and uses the off-line algorithm described in [4] to alleviate over-
loaded links. The latter uses the online algorithm described in
[5] to minimize the interference between different routes in the
network for a specific set of ingress-egress nodes. Both do not
take into account demand QoS requirements and only try to min-
imize the maximum load of certain links in the network. To the
best of our knowledge, a dimensioning algorithm which included
bandwidth reservation with per Class-Type (suitable for Differ-
entiated Services) guarantees or both bandwidth reservation and

fault tolerance concomitantly was not yet proposed.
In this paper, a new approach to dimensioning DiffServ/MPLS

networks taking into account per class bandwidth reservation
and fault tolerance is proposed. The resulting network dimen-
sioning problem can be modeled as a multi-commodity network
flow optimization. Our proposed dimensioning algorithm uses
a Lagrange based relaxation of a modified cost function. The
algorithm includes a bandwidth constraint model in order to
provide per-class bandwidth reservation, and also link weights
which translate to backup LSP fault tolerance cushion weights.
A modified version of our policy can also be run weekly/monthly
in order to redimension LSPs according to the traffic history.
Both proposed heuristics have polynomial complexity and pro-
vide bounds on the value of the optimal objective function, which
can be used to evaluate the accuracy of the results.

The rest of this paper is organized as follows: We first present,
in Section II, our proposed formulation to the network dimen-
sioning problem. An optimal solution to this problem is pro-
vided, but with exponential running time. In Section III, we pro-
pose a new algorithm based on Lagrange relaxation of a modified
cost function. In Section IV, a modified version of our dimen-
sioning heuristic is now an online redimensioning tool. It can be
run periodically to possibly update the capacity and routing of
LSPs according to the traffic demand. A numerical example is
discussed in Section V, and finally our conclusions are summa-
rized in Section VI.

II. PROPOSED DIMENSIONING PROBLEM FORMULATION

A. Bandwidth Reservation Constraints

In this section we define the bandwidth constraint model to be
used in our dimensioning algorithm.

The fundamental requirement for DiffServ-aware Traffic En-
gineering (DS-TE) is to be able to enforce different bandwidth
constraints for different sets of traffic classes. DS-TE may sup-
port up to 8 CTs: CTc, c = 0, · · · , 7. By definition, each CT
is assigned either a Bandwidth Constraint (BC), or a set of BCs.
Therefore, DS-TE must support up to 8 BCs: BCb, b = 0, · · · , 7.

The Russian Doll Model (RDM), [6], is recommended by the
IETF Traffic Engineering Working Group in RFC 3564 ([7]).
Other models have been proposed, such the the Maximum Al-
location Model (MAM),

The RDM may be defined as follows [6]:
• Maximum number of BCs is equal to maximum number of
CTs = 8;
• All LSPs from CTc must use no more than BCb (with b ≤ c ≤
7, and BCb ≤ BCb−1, for b = 1, · · · , 7), i.e.:

All LSPs from CT7 use no more than BC7;
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All LSPs from CT6 and CT7 use no more than BC6;
All LSPs from CT5, CT6 and CT7 use no more than BC5;
· · ·
All LSPs from CT0, CT1, CT2, CT3, CT4, CT5, CT6 and CT7

use no more than BC0.
To illustrate the model, assume only three CTs are activated

in a link and the following BCs are configured: BC0 = 100,
BC1 = 80, and BC2 = 50. Fig. 1 shows the model in a pictorial
manner (nesting dolls). CT0 could be representing the best-effort
traffic, while CT1 the non-real-time traffic, and CT2 the real-
time traffic. Following the model, CT0 could use up to 100%
of the link capacity given that no CT1 or CT2 traffic would be
present in that link. Once CT1 comes into play, it would be able
to occupy up to 80% of the link, and CT0 would be reduced to
20%. Whenever CT2 traffic would also be routed in that link,
CT2 would then be able to use up to 50% by itself, CT1 would
be able to use up to 30% by itself, while CT0 could use up to
20% alone.

CT1CT2 CT0+ +

CT2 CT1+

CT2

B
C

2
B

C
1

B
C

0

Fig. 1. Russian Doll model with three active CTs.

Next we will explain our proposal on how to calculate these
cushion weights.

B. Fault Tolerance Cushion Weights

Besides Traffic Engineering, fault tolerance is another major
advantage of using MPLS. There are two kinds of approaches
for this problem: global repair mechanisms like edge-to-edge
backup LSPs, and local repair mechanisms such as a local de-
tour LSP [8].

To take backup LSP cushion bandwidth into account in our
dimensioning algorithm, we propose to use cushion weights in
our problem formulation. We propose to calculate these cushion
weights based on how frequently a link is selected as a backup
path link. Our proposed algorithm is illustrated in Fig. 2.

Cushion Weights Algorithm
1. For every demand between node pairs belonging to the topology in con-
sideration do:
• Run Dijkstra and determine the shortest path between the demand’s

source and destination.
• Prune the selected shortest path from the topology and run Dijkstra again

in order to select an alternative path.
• For the links, �l, that compose the newly selected path, increment uti-

lization counter U(�l)c = U(�l)c + 1.
2. For each link �l calculate the respective cushion weight γ(�l) as a func-
tion of its utilization in backup paths:

γ(�l) = 1 +
U(�l)c

total number of demands

Fig. 2. Algorithm for calculation of cushion weights.

Once all the γ(�l)s are calculated, we are ready to formulate
our dimensioning problem, which will take into account band-

width reservation for different Class-Types and also fault toler-
ance through the use of cushion weights. Next we describe our
formulation and heuristic algorithm.

C. Problem Formulation

Consider a given physical network topology T (V,L), with a
set of nodes V and a set of links L. Suppose the network designer
is considering a total of N CTs activated in the network.

In order to simplify the notation, we define matrix M (with di-
mensions V ×V ) containing a mapping of the topology T (V,L),
assigning links to node-pairs. Each element of matrix M ,
M(i, j), denotes the physical link �l ∈ L (with l = 1, 2, · · · ,L
and where L represents the cardinality of L) that connects nodes
(i, j) ∈ V . Note that the matrix may be symmetric since the
physical link connecting nodes (i, j) may be the same as the one
connecting nodes (j, i):

M(i, j) =

{
�l, if link �l connects nodes i and j;
0, otherwise. (1)

We define the following notation:
• �l ∈ L: denotes a physical link labeled �l for which the map-
ping to the corresponding node-pair (i, j) is given in M ;
• Cph(�l): denotes the total capacity of link �l;
• Cn(�l): denotes the portion of link �l dedicated to the over-
laying MPLS network n; n = 0, · · · , N − 1 (MPLS network for
CTn).

To bring the dimensioning model closer to reality, we assume
that capacity is available in capacity modules, which implies that
the optimization variable Cph(�l) is integer. We can easily fur-
ther restrict the set of possible integers to commercially available
values such as 10 Mbps, 100 Mbps, 155 Mbps, and 622 Mbps.

We define Dn as the V × V traffic matrix for CTn (with null
diagonal elements). Each element in Dn can be calculated with a
Gaussian approximation Dn = µn +ασn, where µn is the mean,
σn is the the standard deviation, and α is a multiplier that con-
trols the extend to which the estimated demand accommodates
variability of the traffic. In a Gaussian approximation for the rate
distribution, we expect the rate estimation to be exceeded with
probability 1 − G(α), where G is the cumulative distribution of
the standard normal distribution. Depending on the requirement
on the probability that the traffic will exceed the capacity, we
select the appropriate α.

We also define the matrix Ri,j
n containing the set of possible

routes for Dn(i, j). Suppose the number of possible routes is
given by r. The value of r can be different for each CT and for
each node-pair (i, j). Each element in Ri,j

n is defined as follows:

Ri,j
n (h, l) =

{
1 if link �l belongs to route h, (h = 1, · · · , r);
0 otherwise. (2)

We define xr
n(i, j) as the portion of demand Dn(i, j) routed

over route r. In our previous example, assume D0(a, b) = 10
Mbps and D1(a, b) = 20 Mbps. Therefore, x1

0(a, b) could be
configured as 4 Mbps, while x2

0(a, b) could be 6 Mbps, meaning
that 4 Mbps of D0(a, b) are routed over route 1 (�1-�2-�3), while
6 Mbps are routed over route 2 (�4-�5). x1

1(a, b) = 20 Mbps,
since there is only one route for D1(a, b).
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To include bandwidth reservation in our formulation, we de-
fine a vector of bandwidth constraints, BC, to be used in the Rus-
sian Doll model: BC = [BC0, BC1, · · · , BC7].

We define the following objective function:

F =
∑
∀�l∈L

γ(�l) · Cph(�l) (3)

where γ(�l) is a per-link per-capacity unit cost coefficient which
is used to introduce fault management considerations into the
formulation.

As constraints, we must ensure that the variables xr
n(i, j) are

positive {1}; we must ensure that after a demand is partitioned
into more than one route option, the total demand value is still
the same {2}; we must also consider that the total bandwidth
for CTn on link �l is given by the sum of all portions of traffic
belonging to CTn which are routed over �l {3}; and that the total
capacity on a physical link Cph(�l) is given by the sum of all
existing CT traffic on that link {4}; and finally, we also enforce
the bandwidth constraints given by the Russian Doll model {5}.

Dimensioning Optimization Formulation

GIVEN T (V, L), Dn, Rn(i, j), BCn, γ(�l), and N

FIND Cph(�l) (L integer variables)

MINIMIZING F =
∑
∀�l∈L

γ(�l) · Cph(�l)

SUBJECT TO {1} xr
n(i, j) ≥ 0, ∀n, r

{2}
∑

r

xr
n(i, j) = Dn(i, j)

{3}
∑

∀Pi,j(�l)

xr
n(i, j) = Cn(�l)

{4}
N−1∑
n=0

γ(�l) · Cn(�l) = Cph(�l)

{5}
N−1∑

n=y;y=0,···,N−1

Cn(�l) ≤ BCy · Cph(�l)

Fig. 3. Our dimensioning optimization formulation.

Fig. 3 contains a summary of our proposed problem, including
the constrains, and where ∀Pi,j(�l) means for all paths between
node-pair (i, j) routed through physical link �l. It is easy to see
that the complexity of the optimization formulation will grow
tremendously with the complexity of the network topology. Un-
fortunately, we cannot hope for an algorithm that could find the
optimal solution to this problem and also would run in exponen-
tial time. Our heuristic, which will be described next, is based on
the Lagrange relaxation technique [9].

III. PROPOSED DIMENSIONING HEURISTIC

A. Lagrange Relaxation based Subproblem

Lagrange relaxation has the property of providing bounds on
the value of the optimal objective function and, frequently, of

quickly generate good, though not necessarily optimal, solutions
with associated performance guarantees [10]. The optimal value
of a Lagrangian problem is a lower bound (in minimization prob-
lems) on the optimal value of the original problem. We propose
to use this technique to solve our dimensioning problem. Our
Lagrange Relaxation based Dimensioning Algorithm (LaRDA)
is based on the heuristic of minimizing the modified objective
function F ′ = F +

∑
i

wi · constrainti, where w is a Lagrange

multiplier that our algorithm needs to find. If all ws are equal to
zero, and all the constraints in Fig. 3 are respected, we find the
optimal solution to the original problem. If the constraints are
not being fulfilled, we need to increase the value(s) of w(s) so
that we increase their importance in the new objective function
F ′. In this section we show how to find the values of wi that lead
to best results.

In our formulation, we have two sets of Lagrange multipliers,
each set containing as many multipliers as the number of links
considered in the dimensioning formulation (in the constraints
that are being relaxed). Since our formulation is a multicom-
modity flow problem, the Lagrange multipliers are nonnegative
and are associated with the bundle constraints. Note that the new
objective function will be subject to only one constraint (nonneg-
ativity constraint).

With the help of the Lagrange relaxation, we have an algo-
rithm that is able to find an estimation of the optimal solution and
a bound which tells us how far it is from the optimal solution. In
summary, first we eliminate constraints {4} and {5} by incorpo-
rating them into the other constraints and the objective function.
We then relax resulting constraining conditions {2} and {3} by
including them into the new objective function. If the solution
found is not feasible for the constraining conditions, we increase
the constraining conditions’ weight (by increasing the value of
the correspondent multiplier) in the modified objective function,
forcing the solution to approach the optimum. For a more de-
tailed description of Lagrange relaxation methods, refer to [9].
Next, we describe our heuristic in detail.

B. Description of LaRDA

In LaRDA, we use the subgradient optimization technique to
solve the Lagrange multiplier problem previously discussed. We
let w0

1b and w0
2b be any initial choice of values. Using subgradient

optimization, we determine the subsequent values of w1b and w2b

as follows [10]:

wk+1
1b

= [wk
1b + θk

1b(
∑

r

xr
n(i, j)k − Dn(i, j))]+ (4)

wk+1
2b

= [wk
2b + θk

2b(

N−1∑
n=y

∑
∀Pi,j(�l)

xr
n(i, j)−

−BCy ·
N−1∑
n=0

∑
∀Pi,j(�l)

γ(�l) · xr
n(i, j)]+

(5)

In these expressions, the notation [β]+ denotes the positive
part of β, that is max(β, 0).

xr
n(i, j)k represents any solution to the Lagrangian subprob-

lem when w = wk. The variable θk is the step length at the
k-th iteration which indicates how far we move in the gradient
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direction. For convergence, we would like to find θk → 0 and
k∑

j=1

θj → ∞, resulting in:

θk
1b =

λk

[
FUB − L(wk)

]
∥∥∥∥∥
∑

r

xr
n(i, j)k − Dn(i, j)

∥∥∥∥∥
2

(6)

θk
2b =

λk

[
FUB − L(wk)

]
∥∥∥∥∥∥

N−1∑
n=y

∑
∀Pi,j(�l)

xr
n(i, j) − BCy ·

N−1∑
n=0

∑
∀Pi,j(�l)

γ(�l) · xr
n(i, j)

∥∥∥∥∥∥

2

(7)

In the above equations, FUB is an upper bound on the optimal
objective function value, and λk is a scalar chosen chosen strictly
between 0 and 2.

Initially, the upper bound FUB is the objective function value
of any known feasible solution to the optimization problem. As
the algorithm proceeds, it updates this value (FUB) when it gen-
erates a better (i.e. lower cost) feasible solution. We start the
algorithm with λk = 2 and then reduce λk by a factor of 2 when-
ever the best Lagrangian objective function value found so far has
failed to increase in a specified number of iterations, which we
choose to be 4 (based on our experience with case studies). Fig. 4
contains a summary of LaRDA. After the optimal Lagrange mul-
tipliers are found, Cn(�l) is calculated for each physical link, and
finally, Cph(�l) is calculated.

Lagrange Relaxation based Dimensioning Algorithm (LaRDA)
(w0

ab, λk, k = 1)

1. θk
ab is calculated as in Equations 6 and 7;

2. wk+1
ab

is calculated as in Equations 4 and 5;
3. Go to step 6 if one of the following conditions holds:

• Total number of iterations is equal to MAX=150
• FUB = L(wk)
• λk < ε

4. If FUB does not reduce in 4 iterations, reduce λk by a factor of 2;
5. k = k + 1; Go back to step 1.
6. Use the values found for xr

n(i, j) and calculate Cn(�l)
and Cph(�l) as follows:

Cn(�l) =
∑

∀Pi,j(�l)

xr
n(i, j)

Cph(�l) ≥ γ(�l) ·
N−1∑
n=0

Cn(�l)

7. Return Cph(�l)s;

Fig. 4. Our heuristic’s algorithm (LaRDA).

MAX and ε are constant values which translate to the maxi-
mum number of iterations to be run and how small λk can be,
respectively. Both are used as stop criteria for LaRDA and can
be defined by the user. Based on our experience running LaRDA,
we suggest MAX=150. Another stopping criterion that could be
used with LaRDA is to calculate how much the lower bound is
improving when compared to the previous value found. The al-
gorithm could then stop when the improvement is not significant,
which means the bound is good enough.

The use of subgradient optimization for solving the La-
grangian multiplier problem is attractive for several reasons,
which include the fact that it permits us to exploit the underlying
network flow structure, and moreover, the formulas for updat-
ing the Lagrange multipliers wab are rather trivial computation-
ally and very easy to encode in a computer program. The La-
grangian relaxation solution can also be combined with integer
programming by using Lagrangian relaxation to develop an im-
proved start point for the integer programming formulation [10].

C. Complexity and Goodness of Solution

The answer to the question of how good are the bounds pro-
vided by Lagrange relaxation is problem specific and mostly em-
pirical. In [11], G. Cornuejols, M. Fisher, and G. Nemhauser
and in [9], M. Fisher, describe their computational experience
with Lagrange relaxation and provide overwhelming evidence
that its bounds are extremely sharp. For a total of 33 unca-
pacitated network design problems solved in [11], 66.6% of the
problems resulted in very sharp bounds (99.9% accuracy). That
speaks for the goodness of the solution of our Lagrange relax-
ation based heuristic. Regarding computational complexity, the
overall LaRDA algorithm has polynomial time complexity. The
algorithm is linear with respect to the number of iterations k. In
a worst case scenario analysis, regarding the number of nodes V ,
the number of demands between node-pairs grows with V 2 and
considering that so do the number of LSPs, if we also consider
that the ratio between the number of nodes and links is constant,
then the computational complexity grows with V 5. Therefore,
we can estimate that the overall algorithm is O(k × V 5)

IV. PROPOSED REDIMENSIONING HEURISTIC

After some period of time, the network administrator may de-
cide to check on the accuracy of the previously considered traf-
fic load used for network dimensioning. The administrator now
uses our Lagrange Relaxation based Redimensioning Algorithm
(LaRRA), in which Bandwidth Constraints are variables rather
than input data, and finds the new values of Cn(�l) and new val-
ues for BCn. The new parameters found for the Russian Doll
model would also be taking into account the cushion needed for
fault protection. This procedure would be repeated periodically
in order to keep the virtual network dimensioning up-to-date with
the traffic load offered. Note that in the redimensioning policy
we define variables Cn(�l) and BCn as integer variables. The
formulation is very similar, so we will omit it due to the space
constraints.

V. NUMERICAL EXAMPLES

Consider the Abilene topology shown in Fig. 5. Now con-
sider that nodes v1, v2, v5, v6, v7, v9 and v12 (Seattle, Sunny
Yale, Kansas City, Houston, Chicago, Atlanta, and New York
nodes, respectively) are active and have traffic demand. The
topology T (V,L) is known and three CTs are used: CT0, CT1,
and CT2. BC0 = 100%, BC1 = 60%, and BC2 = 40%. The
cushion weights to be used in our cost function are then calcu-
lated according to our proposed algorithm in Fig. 2: γ(�1) = 1.08,

γ(�2) = 1.03, γ(�3) = 1.08, γ(�4) = 1.05, γ(�5) = 1.08, γ(�6) = 1.03,

γ(�7) = 1.11, γ(�8) = 1.05, γ(�9) = 1.03, γ(�10) = 1.08, γ(�11) = 1.08,

γ(�12) = 1.03, γ(�13) = 1.05, γ(�14) = 1.03, γ(�15) = 1.05.
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Fig. 5. Abilene backbone network.

Using a Gaussian approximation, the following demands
(shown in Table I) are calculated based on the given mean and
standard deviation of each traffic:

TABLE I

TRAFFIC DEMANDS FOR NUMERICAL EXAMPLE.

d0(1, 2) = 100 d0(1, 7) = 20 d0(1, 9) = 30 d0(1, 12) = 30
d0(7, 12) = 40 d0(9, 1) = 30 d0(9, 7) = 30 d0(9, 12) = 40
d0(5, 6) = 100 d0(7, 1) = 20 d0(2, 6) = 100 d0(6, 9) = 100
d0(12, 1) = 30 d0(12, 7) = 40 d1(1, 2) = 0 d1(1, 7) = 10
d1(1, 9) = 30 d1(1, 12) = 30 d1(7, 12) = 30 d1(9, 1) = 30
d1(9, 7) = 30 d1(9, 12) = 30 d1(5, 6) = 0 d1(1, 12) = 30
d1(2, 6) = 0 d1(6, 9) = 0 d1(12, 1) = 30 d1(12, 7) = 30
d2(1, 2) = 0 d2(1, 7) = 10 d2(1, 9) = 40 d2(1, 12) = 40
d2(5, 6) = 0 d2(7, 1) = 10 d2(2, 6) = 0 d2(6, 9) = 0
d2(12, 1) = 40 d2(12, 7) = 40 d2(7, 9) = 40 d2(12, 9) = 40
d2(7, 12) = 40 d2(9, 1) = 40 d2(9, 7) = 40 d2(9, 12) = 40
d0(7, 9) = 30 d0(12, 9) = 40 d1(7, 9) = 30 d1(12, 9) = 30

The following routing options are given for each active node-
pair. Note that Ri,j

k = Rj,i
k and therefore the similar routing

options were omitted.

R1,2
0 = �1

R1,7
0 = �2 − �6 − �9 − �11; �1 − �3 − �5 − �7 − �10 − �11

R1,9
0 = �2 − �6 − �9 − �10

R1,12
0 = R1,12

1 ; �1 − �3 − �5 − �7 − �13 − �15
R2,6

0 = �3 − �5; R7,9
0 = �11 − �10

R7,12
0 = �11 − �12 − �14; �11 − �10 − �13 − �15

R9,12
0 = �13 − �15; �10 − �12 − �14

R1,7
1 = �2 − �6 − �9 − �11; R1,9

1 = �2 − �6 − �9 − �10
R1,12

1 = �2 − �6 − �9 − �12 − �14
R7,9

1 = �11 − �10; R9,12
1 = �13 − �15

R7,12
1 = �11 − �12 − �14

R1,7
2 = R1,7

1 ; �1 − �3 − �5 − �7 − �10 − �11
R1,9

2 = R1,9
1 ; �1 − �3 − �5 − �7

R1,12
2 = R1,12

0 ; R7,12
2 = R7,12

0

R7,9
2 = �11 − �10; �11 − �9 − �8 − �7

R9,12
2 = �13 − �15; �10 − �12 − �14

R5,6
0 = �8; R6,9

0 = �7

The results for the physical link capacities found by our op-
timization formulation are shown in Table II and graphically il-
lustrated in Fig. 6, where the links get thicker as their load in-
creases. Our heuristic found the results in 23 iterations. The di-
mensioned network has bandwidth constraints of BC0 = 100%,
BC1 = 60%, and BC2 = 40% to provide service protection.

TABLE II

RESULTS FOR NUMERICAL EXAMPLE.

Cph(�1) = 120 Cph(�2) = 500 Cph(�3) = 120

Cph(�4) = 0 Cph(�5) = 110 Cph(�6) = 500

Cph(�7) = 120 Cph(�8) = 110 Cph(�9) = 540

Cph(�10) = 400 Cph(�11) = 570 Cph(�12) = 470

Cph(�13) = 270 Cph(�14) = 470 Cph(�15) = 270
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Fig. 6. Abilene backbone network.

VI. CONCLUSIONS

The two heuristics proposed in this paper can be categorized
as an off-line Traffic Engineering tool (LaRDA) and an online
resource optimization tool (LaRRA). They solve problems that
can be modeled as a multi-commodity network flow optimiza-
tion. Lagrange relaxation is a common technique to solve these
problems. Our formulation minimizes the cost of the total net-
work and includes the delay constraints of the traffic demands
for each active Class-Type and also fault tolerance considera-
tions. Both proposed heuristics have polynomial complexity and
provide bounds on the value of the optimal objective function,
which can be used to evaluate the accuracy of the results. The
proposed heuristics are efficient polynomial algorithms with a
comprehensive approach to network planning.
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