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Abstract. Optimal control is a possible approach to Internet traffic en-
gineering, which aims to achieve QoS guarantees and efficiency in network
resources use. The goal can be better achieved by using the Multi-Protocol
Label Switching technique (MPLS), which provides increased scalability,
manageability and enhanced QoS functions in IP-based networks. In this
context, this paper proposes a method to find the optimal capacity provi-
sioning for a Label Switched Path (LSP) of a MPLS network. The optimal
capacity allocation for a given time interval is computed with respect to a
quadratic cost function including a switching cost and a management cost
for the whole network. The unique optimal solution is analytically com-
puted assuming the knowledge of the offered traffic for the whole control
interval. Furthermore, a sub-optimal on line solution is proposed which
only requires the knowledge of a narrow sliding window of the offered traf-
fic. Optimal and sub-optimal solutions are compared with respect to a
simulated case study, enlightening the simplicity and, at the same time,
the effectiveness of the second one.

1 Introduction

The growth of Internet has made evident the need for Traffic Engineering (TE)
which became an essential tool for Internet Service Providers (ISPs) to optimize
the network resources utilization in order to achieve QoS guarantees. Today,
QoS-based services are offered in terms of contract agreements between the ISP
and its customers.

Several architectures for supporting QoS have been developed|[1, 2]. A strat-
egy proposed in IETF[3] is to consider two different types of services: Corporate-
service and Customer-service.

Corporate-service is based on a contract, the Service Level Agreement (SLA),
between the customer and the ISP, which is valid for a reasonable period of time



and for a large amount of bandwidth. This type of agreement can be consid-
ered ” quasi permanent SLA” and it is particularly appropriate for companies
who frequently require QoS guarantees and connections among distant network
nodes (e.g. branch offices). The contract could also consider ” quasi on-demand”
requests, i.e., bandwidth requests which can be satisfied within a determinate
period of time and not immediately ” on-demand” .

On the other hand, customer-service is not based on quasi permanent SLAs
but supports the setup of dynamic QoS sessions.

From the above considerations, it turns out that TE can be exercised on two
time-scales depending on the service nature:

long-term: the traffic requests are predicted on a wide interval (days-weeks-
months) by the existing long-term SLA contract;

short-term: decisions are based on the observed state of the operational network
on a short interval (minutes-hours).

Multi-Protocol Label Switching (MPLS) can be used to perform TE [4]. It
has been shown that MPLS provides increased scalability, manageability and
QoS functions to IP-based networks[5].

MPLS is the convergence of connection-oriented forwarding techniques and
the Internet’s routing protocols[6, 7]. MPLS directs the flow of IP packets along
a predetermined path inside the network, called Label Switched Path (LSP). The
main concept of MPLS is to pad a label on each packet. Packets are assigned
a short fixed length label that summarize the destination, the precedence, QoS
information and route.

The LSP setup problem has been approached in order to reduce the number
of LSPs in the network and to get an optimal resources utilization[8, 9]. Another
important issue is the MPLS network dimensioning: the objective is to accom-
modate all expected demands without overloading any part of the network.

In this paper we consider two routers connected by a direct LSP and we
formulate the LSP capacity dimensioning problem as an optimization problem.
We will assume that, at each time, the bandwidth request between the two
considered routers is completely satisfied, partly by the LSP direct connection
and partly by an alternative IP connection (this latter if the LSP capacity is not
enough to satisfy the request). First we assume to know the bandwidth requests
between the two routers over the whole control time interval [0, T|. This is a quite
unlikely assumption because it is not possible to exactly predict the traffic profile
that will be offered to the network, due to the nature of IP traffic. However,
we observe some properties of the optimal solution that allow us to reduce the
need for the bandwidth request knowledge just to a sliding window over [0, T,
centered on the current time. In this case we obtain a sub-optimal, almost ”on
line”, solution.

In the context of long-term TE and in particular of corporate-service agree-
ments which consider ” quasi on-demand” bandwidth requests, the knowledge of
a narrow sliding window over [0,T] is a much more likely assumption because



an ahead booking can be considered. Moreover, the proposed solution is com-
pletely independent of any stochastic assumption on the Internet traffic demand
behaviour.

In the next Section, we formulate the optimal LSP capacity provisioning
problem with the assumption of knowing the offered traffic over the whole control
interval. Then the solution is found with respect to a quadratic cost function
and subjected to a physical lower bound constraint. In Section 3, an on line
sub-optimal solution of the same problem is proposed, obtained by reducing
the hypothesis on the bandwidth requests knowledge. In the same Section,
an analysis has been performed about the approximation offered by the sub-
optimal solution with respect to the optimal one. In Section 4, some concluding
remarks are given with respect to a simulated case study; the results confirmed
the high approximation level of the sub-optimal solution, together with relevant
advantages related to the reduction in the required information.

2 Optimal solution for the capacity provisioning
problem

Let us denote by [0, T] the fixed control time interval over which we assume to
know the bandwidth requests between two fixed routers. We consider an uniform
discretization of [0, T] and denote by k = 1,..., N, the discrete time variable.
Furthermore, let b(k) and z(k) respectively denote the bandwidth request and
the LSP capacity at time k. We assume that b (k) € [0, 4], k = 1,..., N, where
A denotes the bandwidth availability on the LSP. We can consider the LSP
capacity like a simple linear discrete time dynamical system:

a(k) = ok — 1)+ A(k), k=12,..,N (1)

where the initial state 2(0) = zg is assumed known and positive and the control
variable A(k) represents the capacity variation of the LSP at time k.
The LSP capacity is constrained by the following inequalities:

a(k) >0, k=12, N (2)

which has an obvious physical meaning.

For the above LSP capacity provisioning problem, a cost function have de-
fined in order to match the goal of taking into account the most relevant cost
terms with the one of getting a handling mathematical formulation. In particular
we consider the following cost terms:

e LSP cost: it takes into account the cost due to the reserved capacity
used to forward packets in MPLS mode. This cost, at time k, is assumed
proportional to the LSP capacity:

Ji(k) = ci - x(k) (3)

where ¢; > 0 is the unitary cost for LSP capacity allocation.



e Faxcess cost: it takes mainly into account a cost due to packets switching
performed in IP mode and their routing on an alternative path that occurs
when the LSP capacity is less than the bandwidth request (z(k) < b(k)).
Following the criteria that forwarding packets in MPLS mode is less ex-
pensive than IP mode, we assume the unitary cost coefficient c, for the
bandwidth request not allocated on the LSP, greater than ¢;. To empha-
size the advantage of MPLS techniques and to promote their utilization,
we consider the above mentioned cost depending quadratically on the dif-
ference between the LSP capacity and the bandwidth request. On the
other hand, it may happen that, at a generic time &, the LSP capacity is
greater than the bandwidth request(x(k) > b(k)). In this case a certain
amount of bandwidth is reserved without utilization: we have assumed to
penalize this event with a cost depending quadratically on the amount of
waste bandwidth. For simplicity we consider the coefficient per unit of
waste bandwidth equal again to c.. From the above consideration, at time
k, we have the following excess cost term:

Je(k) = ce - [b(k) — z(k)]? (4)
where, as already said, c, > ¢;.

o Dimensioning variation cost: it takes into account the LSP dimensioning
variation cost. Each change of LSP capacity is charged in order to avoid
too much wide LSP capacity re-dimensioning, which in turns affects the
dimensioning of the other LSPs in the MPLS network. The same term
can also take into account the so called signalling cost which occurs at
each LSP capacity variation. The dimensioning variation cost at time k is
assumed to depend quadratically on the size variation of LSP capacity:

Jo(k) = ¢, - A% (k) (5)
where ¢, > 0 is the unitary dimensioning variation cost of the LSP.

It follows that the total cost function in the control interval is:

= awk)+ Y celb(k) — (k)] + > cuA?(k) . (6)
k=1 k=1 k=1

From (1), the cost function (6) can be rewritten as follows:

N N N
o o= ey V(k)+a Zx(k) —2¢e Y _b(k)x(k) + (cs + co)z*(N) +
k=1 k= k=1
N-1 N—1
+cvx0 + (2¢4 + ¢ce) Z 22(k) — 2¢, Z x(k + Dx(k) — 2¢cyxoz(l)
k=1 k=1

Our aim is to minimize the total cost J; with respect to the variable z(k),
k = 1,.., N, in the presence of constraints (2). Let us note that the terms



Ce * ijzl b?(k) and ¢, - 23 do not depend on z(k), k = 1,.., N, therefore we do
not consider them in the cost minimization. We can, at this point, formulate
the following quadratic programming problem.

Problem 1 Find a global minimum for the cost function:

J@)=2r -Hy-z+ Iz (7)
in the admissible set:

D={zeR": 2>0} (8)
where x and f are the following N -vectors:

¢ —2¢e - b(1) = 2¢, - g
z(1) ¢ — 2¢. - b(2)

¢; — 2¢e - b(N)

and Hy 1is the following N x N matriz:

2¢y + Ce —cCy 0 . 0 0
—Cy 2¢, + Ce —Cy . 0 0
0 —Cy . . . .
Hy = ¢ - 0 . (10)
0 0 . —cy  2¢y + e —Cy
0 0 . 0 —Cy Cy + Ce

The matrix Hpy is definite positive, as can be easily proved by exploiting
some results in [10], so that J is strictly convex in RV,
The solution of Problem 1 is given in the following theorem.

Theorem 2 Assuming ce > ¢, b(k) > %, k =1,...,N, the unique solution of
Problem 1 is:

1
w0 = —5Hy' - f (1)

Proof. Taking the strict convexity of J into account, the unique global
minimum of J in R¥ is the solution of the equation:

AN
<E> =2Hy -2+ f =0

that is (11). In order to prove that (11) is also the unique solution of Problem
1, we will verify that z° € D, that is 2° (k) > 0, k = 1,.., N. The generic
component of ¢ is:

N
xo(k):f%Z(Hg,l)kj-f(j) k=1,2,..,N . (12)
=1



By suitably handling a result given in [10] about the analytical expression of
HX,I, we have:
clvi—jl

(HN')i; = ot (] L8 VAN —max(i gy} et {Komini, jy-1} (13)

where H;, i =1,..., N, is an ¢ x ¢ matrix defined according to (10) and K; is the
following ¢ X ¢ matrix:

2¢, + Ce —Cy 0 . 0
—Cy 2¢, + Ce . .
K, = 0 . . —Cy 0 , i=12,...,N .
. . —c,  2¢, + ce —Cy
0 . 0 —Cy 2¢, + Ce

Noting that H; and K;, i = 1,..., N, are definite positive matrices, as can be
proved by exploiting again results in [10], the positivity of (H K,l) ki follows from
(13) for k,j =1, ..., N. The positivity of z° (k), k =1, ..., N, is then implied by
the positivity of —f (7), 7 = 1,..., N. This, in turn, is an obvious consequence of
the assumptions and of the positivity of xg. |

Remark 3. Tt is worth noting that the optimal solution z° (k), for each k, depends
on all the samples b(j), j =1,..., N, as it clearly results from (12).

3 Sub-optimal on line solution

Although the hypothesis of complete knowledge of Internet traffic demand on
the control discrete time interval [0, N] is partially supported by long-term TE
framework, our aim, in this Section, is to reduce this hypothesis. Indeed, we
will show that, for the particular structure of the inverse matrix H&l, we can
motivate a sub-optimal solution assuming to know just a narrow sliding window
on the bandwidth profile, centered at the current time, much smaller than the
total time interval [0, N] considered before. As a consequence, the structure
which characterizes the sub-optimal solution can be implemented ”on line”,
while the optimal one is clearly ”off line”.

In order to analyze the behaviour of the suboptimal solution we are going to
introduce, let us define the following parameter:

= Yt } h=1,2,..,(N—1) . 14
= max  {(HY), 20 (N =1) (14)
The behaviour of the above parameter «j, has been numerically investigated
for different values of ¢, c., ¢; and N. The analysis has pointed out a monotone
decreasing behaviour of «y,, as shown for instance in Fig.s 1, 2, 3.
Let us now give the definition of the sub-optimal solution for the Problem 1.



Definition 4. For a fixed integer N > 1, let be M < 2N — 3 a positive odd
integer. We define the following sub-optimal solution:

1
% = —§PN]\,{ . f (15)

where Pnpr is the M-diagonal matriz of dimension N X N with entries:

HyY.. for |i—jl=0,1,.., %=1
(Pn)i; = { (Hy K o , 2 (16)
J 0  for |i—j|=24 _(N-1)

Remark 5. From (16) it is obvious that the generic component z%° (k), k=1,...,N,
depends on a sliding window of no more than M components f (j) of f. This
means that the suboptimal solution, at each time k, requires the knowledge
of bandwidth requests on a sub-interval containing no more than % future
samples b (7).

In order to verify that x°° is a good approximation of x°, we introduce an
upper bound on the error, which depends on M and is sufficiently small when
M is suitably chosen. In fact, considering the norm ||| and recalling that
b(k) <A, k=1,..,N, from (9) it results:

[fllo =, max A{[f(k)[} < e +2ceA+ 2,20 = 2C

k=1,...,
Therefore
1
|z° —2*|, = kgf{{iN{\Io (k) — 2 (K)]} = 5 [(Hx" — Pyu) fllo <
1 _
< 3 |(Hy" = Paar) ||, - 1 flloe <
<

C max {‘(H&l)m = (Pnm)i;

3,j=1,....N

j

From (13) and the definite positivity of H;, K;, we have (H;,l)ij >0,4,7 =
1,..., N. Then, from (16), taking the definition (14) of oy, into account together
with its monotonic property, it results:

-1 -1
max {‘H o ( NM).,} = max {H ,}:
i,j=1,...N ( N )U w it |ifj|:Mzi1,...,(N71) ( N )lj
= max p — QM+
h=2LEL (N -1) 2

Therefore we have:

o]

2 = 2*ll, < Casgs - an)



In order to analyze the approximation level given by (17), it is useful to
observe that if we set:

M+1

5 h (18)

when M is an odd integer running from 1 to (2N — 3), h assumes the values 1,
2,...,(N — 1). Therefore we can rewrite (17) as follows:

l2° = 2°° o, < Cow

and analyze the approximation level by exploiting the behaviour of ay,.
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(cy=3, c.=30, ¢;=1) (cy=50, c,=3, ¢;=1)

Remark 6. As it appears from Fig.s 1, 2, 3, ay, approaches quickly zero, for each
fixed IV, when h reaches a few unit value. Therefore, also when IV increases,
the approximation error can be kept low by assuming a suitable bounded value
for h. For instance, in Fig. 1 and in Fig. 2 we have aj < 1072 when h ~ 7
(which amounts to the knowledge of only six future samples of b(j)) and this
virtually for every N greater than about ten. From Fig. 3, we observe that



ap < 3-1073, for every N, also if h is only equal to one (this means that 2*° (k),
k=1,...,N, depends only on the current request b (k) and no knowledge of the
future is required). The same conclusion is also evidenced by Fig. 4 where the
behaviour of the parameter M, numerically obtained by (14) taking (18) into
account, is also given in a 3-dimensional representation for different values of oy,
and N, assuming for instance ¢, = 50, ¢, = 3, ¢; = 1. For oy, and N fixed, Fig.
4 allows to deduce the corresponding value for the parameter M. It appears
that M quickly reaches a steady state value when NN increases, for each ay,.

4 An application to simulated data

In order to test the application of the optimal and sub-optimal LSP capacity
allocation procedures, we have considered a case study obtained by simulating
a sequence of bandwidth requests.

To generate this bandwidth profile, we consider each request arrival time
and each request death time as an event. Besides, we assume that two events
occur at the same time with probability zero. In particular we simulate three
stochastic processes:

- the first one generates the requests arrival times and it is simulated as a
Poisson process with parameter A = %;

- the second concerns the time duration of each request, and is characterized
by an exponential distribution with parameter pu = %;

- the last one is related to the amount of bandwidth of each request, and
follows a uniform distribution on the integers of the interval [1, 10].

On the generated bandwidth profile we select a time window containing N =
40 samples. As initial state we consider xy = 11.3 corresponding to the average
value of the bandwidth requests. Using the above data, we compute the optimal
and the sub-optimal solutions considering, for the parameters c,, c., ¢;, the same
values as in Fig.s 1, 2, 3. We have considered a sub-optimal solution based for
instance on the knowledge of only 8 future samples, which means M = 17. Note
that, for the choice ¢, = 50, ¢, = 3, ¢; = 1 and assuming A = 35, Fig. 4 allows to
guarantee an ”a priori” approximation error with respect to the optimal solution
not greater than 6.5.

The results are given in Fig.s 5, 6, 7 where the simulated bandwidth profile
is also shown. From Fig. 5 we easily verify the above expected approximation
level.

Concerning the effects of the cost parameters on the optimal solution, we
have the following remarks:

- noting that the optimal solution is defined modulo a positive factor in the
cost function, we have normalized the cost coefficients assuming always
aq=1;



- the parameter c,, which weights the variation size cost, affects the be-
haviour of the optimal solution considerably; in particular the higher is
the value of ¢,, the smoother the solution becomes;

- the parameter c, influences the fitting capability of the optimal solution
with respect to the requested bandwidth reference. Note also that the same
parameter influences the fitting capability of the sub-optimal solution with
respect to the optimal one: this is due to the fact that, as g—" increases, the
matrix Hpy approaches the identity matrix and consequently x*° tends to
coincide with z°.

A comparison between the optimal and the sub-optimal solution can be car-
ried out both with reference to the instantaneous approximation error and to
the related costs. For the first point, we observe that the maximum deviation
between x? and x°° is of about 3, 0.2, 0 respectively in the three considered cases.
It is worth noting that virtually the same numerical results can be foreseen by
exploiting the upper bound given by (17).

Concerning the related costs, considering for instance the first choice of pa-
rameters (¢, = 50, c. = 3, ¢g = 1), we obtain J(z°) = 6672, while for the
sub-optimal solution (with M = 17), we have J(2*°) = 7141, with an increase
of about 6.56%. It appears that the cost increase is very low, when compared
with the advantage (in the better case) of discarding 31 future samples b(j).
Finally note that, if we want to furthermore reduce the cost increase, we can
increase M; assuming for instance M = 21 (10 future samples), the value of J
for the corresponding sub-optimal solution, becomes 6827, which amounts to an
increase of only 2.27%.
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