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Absfracf- This paper presents a new scheme to esti- 
mate the user mobility by incorporating the aggregate 
history of mobile users and system parameters. With this 
approach, each user’s position within the location area is 
differentiated by zone partition for more accurate pre- 
diction. In order tn provide the flexibility of tradeoff be- 
tween quality demand and computation complexity, the 
estimation is adjusted dynamically according to the con- 
straint of prediction order. Then an adaptive algorithm 
is developed to predict the future position of mobile ter- 
minals in terms of location probabilities, while consider- 
ing each terminal’s movement direction, residence time, 
and path information. Simulation results demonstrate 
that the signaling cost for location tracking under delay 
bound is greatly reduced based on the estimated user mo- 
bility pattern. 
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I. INTRODUCTION 

With the increasing demand for access to Intemet and the 
advance technologies of wireless systems, it is envisioned 
that mobile users are able to enjoy the same quality that 
available to fixed users when they move from one position to 
another. The mobility support, which enables mobile users 
to communicate with others regardless of their locations, is 
related to the mobility panem of the mobile terminals (MTs). 
The user mobility pattem is very important in wireless net- 
works because it is the fundamental information for location 
tracking and the enhancement of Quality of Service (QoS).  
For example, the information of user mobility can be used 
to efficiently allocate the radio channels to each MT,red uc- 
ing the hand-off dropping probability caused by the shortage 
of bandwidth and yielding maximum system throughput [SI, 
[9]. Also many mobility management schemes utilize the 
user mobility pattem to improve system performance by re- 
ducing signaling cost under delay bound [3], [6] .  
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In order to capture the user mobility panem, we need to 
consider the user historic records and path availability in the 
observation areas. Some of the existing methods are aimed 
to find the most probable cell or a cluster of cells without 
considering the historic records, which may overlook some 
probable cells [4], [IO]. Another issue is that most of the 
previous solutions do not take the path information into ac- 
count, preventing them from practical application [2], [SI. 
Also, it is critical to consider the computation scalability for 
real-time applications in mobile environment. 

In this paper, we propose a new method to estimate the 
user mobility in terms of location probabilities for each MT. 
The rest of this paper is organized as follows. In Section 11, 
a system model is presented in which new concepts ofzone 
and prediction order are introduced. In Section 111, an al- 
gorithm is developed for calculating the number of probable 
cells and predicting the future cells. It is also used to derive 
location probabilities for a set of cells instead of choosing 
the most probable cell. In Section IV, we describe the sim- 
ulation model and the parameters in our experiments. The 
effect ofthe proposed scheme on location tracking is shown 
in Section IV. Finally, we conclude the paper in Section V. 

11. T H E  CONCEPTS OF Z O N E  PARTITION AND 
PREDlCTiON ORDER 

A typical wireless network is composed of a wirelined 
backbone and a number of base stations (BSs). A mobile 
switching center (MSC) controls a set of BSs, manages the 
resources as well as the signaling exchanges. If an MT is 
moving from one cell to a cell which belongs to another 
MSC, location registration and identity authorization may he 
involved. In order to predict the future locations of an MT, 
we should differentiate an MT’s current position in a large 
area. Here, we extend the shadowing cluster concept, which 
was introduced in [9]. For the two-dimensional topology, 
hexagons are used to denote the cells; thus, each cell has six 
neighbors and the probability of an MT leaving along one 
side is assumed to he 6. However, this is unfair for the MTs 
with an active connection and a specific destination. 

610 

mailto:wwang@eos.ncsu.edu
mailto:ece.gatech.edu


Therefore, we .propose the zone partition concept within 
the coverage of an MSC to predict the MTs’ position in 
smaller granularity. There may he varying number of zones 
in real environment, depending on geographic circumstances 
and network architectures. As an example, the service area 
of each MSC is divided into n zones (n = 7)as shown in 
Fig. 1. The MT‘s current position is closely related to its next 
position because of the continuity of an MT’s movement. If 
an MT is currently in zone 2, it is likely to move into zone 
0,1,3 and even to the coverage area of MSC-C in the next 
moment. In such a way, we incorporate the MT’s movement 
direction and position (zone) in estimating an MT’s mobility 
pattern. 

Fig. 1. Zone PztiCion. 

An MT’s current resident cell can he determined in sev- 
eral ways. First, when an MT initiates a call, it sends routing 
request to the serving MSC through the serving BS. As a 
result, the network knows in which cell the calling MT is re- 
siding. Second, when an incoming call arrives at an MT, the 
network first locates the MSC with which the called MT has 
registered. Then the MSC pages the BSs in its controlling 
area so as to find which BS is serving the called MT. Thus, 
the called MT’s current cell is known to the network. Third, 
the MT’s location can also be obtained through location ser- 
vices management provided hy wireless systems [l]. 

Furthermore, we introduce the concept ofprediction order 
because it is necessary to know how many cells are covered 
in the prediction. If the estimated cells cover only the cells 
ofthe first ring, which are adjoining to the MT’s current cell, 
then it is calledfirsf order predicfion. Similarly, the second 
orderpredicrion is associated with those cells that are adja- 
cent to the cells in the first ring and those cells covered in the 
first order prediction as in Fig. 2. Prediction order is a very 
helpful parameter in balancing the computation complexity 
and the prediction accuracy. For the first order prediction, 
only six cells are considered, i.e., the computation is simple. 
If the second order prediction is required, there are eighteen 
cells to be considered. Correspondingly, the complexity of 
computation increases, which is demonstrated in Section 111. 

111. ESTIMATION ALGORITHM AND PROCEDURE 
In this section, we discuss how to identify those cells in 

which an MT will probably mov: into and how to determine 
their location probabilities. Let Pz,;(t), be the location proh- 
abilities of the cells that an MT will move into. If an MT z 
is currently in cell i, then 

P=,<(t) = [p=,i.O(t) p=,i,l(t) pz,i,2(t) ’.. p=,<,N(t)]? (1) 

where P,,i,j(t) in (2), is the probability that an MT, 2, cur- 
rently in cell i, will be in-cell j and N is the total number 
of cells for prediction. P,,;( t )  depends on the MT’s his- 
toric records, current position, velocity, and moving direc- 
tion. Therefore, Pz,,,j(t) has the general form 

P*,i,j(t) = F(v=(t),y=(t),I,(t),8=(t)), (2) 

where v.(t) is the velocity of the MT 2, yz( t )  is the prob- 
ability density function (pd9 of the MT’s residence time in 
a cell.. l.(t) is used to specify the current MT’s zone posi- 
tion and the moving direction, 6’,(t), is defined as the degree 
from the current direction clockwise or counter-clockwise. 
Based on these parameters, the computation can be divided 
into following steps: I )  Determine the MT’s current and fu- 
ture zone partitions; 2) Calculate the number of cells for es- 
timation; and 3) Compute the location probabilities. 

A. Esfimafion ofzones 

The coordinate system shown in Fig. 3 is defined with its 
origin at the current location ofthe MT, i.e., the MT is always 
in its origin and its previous direction is the positive direction 
of the X axis. Y axis is obtained by turning 90’ counter- 
clockwise from the X axis. 

Assume an MT is moving from point 0 (Zo)to ward A; 
thus, its next position may he in zone 1, Z1. In general, the 
future zone, Case k (1 5 k 5 n - 1) can be determined as 

U Case 1 -1 4 Z1 to Z,-I, 

611 



Y 

X 

Muhplezones 

R g  3 Coordmate System with Zone PmhOn 

where n is the total number of zones and 90 is the angle of 
each zone. It is possible that more than one zone will be in- 
volved in estimating location probabilities because it is dif- 
ficult to differentiate an MT's position around the boundary 
of zones as the dark region shown in Fig. 3. Thus, we ex- 
tend the possible zones for Case k (n < k < 2n - 1) by the 
following expression: 

I e&) I (mod 4 5 $ .BO (4) 

I e&) - eo 1 (mod r )  5 5 . eo 
U Case n -t Z,-, and Z, 

-A Case n + 1 + 21 and 22 

1 &(t) - (n - 2 ) .  0, [ (mod r )  5 5 . So 
U Case 2n - 1 --t Zn-z and Zn-, 

B. Calculaiion ofcells Number 

We compute the number of cells that an MT may have 
traveled during the time window AT. Let w.(O) be the aver- 
age velocity of an MT and consider that the MT traversed a 
cell with an average time of its residence time. The pdf of an 
MT's residence time is assumed to he Gamma distribution, 
which has Laplace transform Q.,T(s) with the mean value 
l /p  and the variance V, i.e., Q z , ~ ( s )  = (e)', where 
7 = &. Given the mean residence time, E,[T] = 1, the 
travel order, o,(t), that an MT may reach along one duec- 
tion is obtained by 

r - 

To ensure the cell coverage required by the prediction or- 
der, O,(t), we must consider the maximum number of cells 
needed by both=el order and the prediction order. We de- 
note N,(max{o,(t), O,(t)} = r : t ,  k), which is rewritten 
as N,(r : t, k) in short, as the number of probable cells in 
the mobility profiles w i t h A e r  T at time t for Case k .  The 
most simple scenario is o.(t) = O,(t) = 1, the number of 
the probable cells for Case I in (3), N,(r = 1 : t ,  l), is then 
determined by 

Similarly, we can have a general form for calculating the 
number of probable cells for other cases, N ,  (r : t, k), that is 

C. Prediction of Location Probabilities 

Consider a particular cell, the number of paths or travel 
routes through this cell is finite. Then the path informa- 
tion can be recorded in a trace records matrix (TRM) of 
L x M ,  where L is'the total number of records and M is 
the total number of cells that an MT has traversed in the 
period of observation. The element z,p (a = 1,2,. . . ,k 
0 = 1,2, . . . , M), of the TRM, denotes whether the MT has 
traversed a cell, z , ~  = 1 or not, zoo = 0, respectively. 

Given this matrix 2, the probability of going tbrougb each 
cell can be estimated by comparing with path database (PD), 
which is a part of the digital map. Moreover, we assume 
that an aggregate historic path database 'Df is available to 
retrieve in the network administration center. Each record 
in this database is the previous path that the MT z has tra- 
versed. ThenP,,i,j(t)in(2),forj=1,2,-..,N,(r:t,k), 
is computed by the following procedures: . Step 1: Select a value 0 < po < 1 as the initial point for 
computing the location probabilities. 

Step 2: Start from the bottom line of TRM and take the 
last two non-zero elements of the TRM to make a temporary 
path P as shown in Fig. 4(a). 

Step 3: Compare the path P to the equal or close segment 
in PD as shown in Fig. 4(h). There may be a set of cells that 
can be the next cell along with path P ,  which is represented 
by a set P:. Each element of this set, Xj E P," is a probable 
cell in Fig. 4 (c), and it gives apossiblepath, b ( X j ) .  
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Fig. 4. Prediction of Location Probabilities 

Step 4: Estimate location probabilities, P+.,(t), under 
the process shown in Fig. 5.  This algorithm starts from ex- 
amining each cell in the set of possible cells, Xj E ?,",and 
the total number of cells in this set is N.(r : t, k )  from (7). 
If a probable cell, Xj,is in the first order prediction and the 
its corresponding path, F(X,), can he found in the historic 
path database D,", then the cell Xj  has the highest location 
probability. This emphasizes the importance of prediction 
constraints and the user history. After that, as the probable 
cells are getting farther away from the MT's current position, 
and they are not relevant to the historic paths, the location 
probabilities decrease. This process continues until all cells 
in the possible set are scrutinized. 

As a result, a sequence of location probabilities is obtained 
in terms ofpo, where po can he solved by applying the fol- 
lowing expression: 

PZ,i,j(t) = 1 (8) 
v 

jE(P: U n i . ( ~ : t , k ) )  

Iv. PERFORMANCE ANALYSIS 

There are many ways to evaluate the effectiveness of the 
proposed scheme [SI, 161, [9]. Here we show the effect 
of these results on location tracking in wireless networks. 
In current wireless systems, location tracking is realized 
through paging process, in which an MSC sends polling 
message to BSs to determine the serving cell of the called 
MT. Paging cost is concerned with network resource because 
the paging message is sent via down-link channels; thus, it 
should he reduced as much as possible. On the other hand, 
paging delay affects the latency of service delivery, which 
is regarded as one of the QoS parameters. Therefore, the 
paging cosf must he reduced under delay hound. 

po :=initial value of the highest pmbabilir) 
P := lemporary p~ of TRM 
P: := st of probable cells in PD along path P 
p(X,) :=possible palh of cell X, E P: 
N,(r:t,~):=N.(max(~,O.(t)) = r : t , k )  
P,,,,(t) := loeatim pmbbiliv at e l l  j given an MF z 

is eumntly in cell i 

Fig. 5 .  Esfimation o f k t i o n  Probabilities (Sop 4). 

We consider that the MTs move with varying speed and di- 
rections [7], [I I]. The initial velocity of an MT is assumed 
to he a random variable with Gaussian probability density 
function truncated in the range of [O, 112km/h) and the ve- 
locity increment is taken to be a uniformly distributed ran- 
dom variable in the range of &40% of the average velocity, 
80kmlh. As for the residence time distribution, the values 
ofpistakenwith 1.65[12]. 

The most important feature of this simulation is that we 
use an actual digital map instead of mathematical models. 
The cell radius is assumed to be 2km in our simulation. The 
full area of the segmentation map is covered by this type 
of cells. For &(t)  = *ta/3, and &(t) = &s/2, we first 
determine the probable zones using (3) and (4), limiting the 
probable cells in a particular region. Then the number of 
probablecells iscomputed byusing(S)and(7)in SectionIII. 
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(b) Second order 

Fig. 6. Comparison of Paging Cos= 

The paging costs resulted from the location probabilities 
of first and second order prediction are compared to that of 
uniform distributions without prediction. The numerical re- 
sults of paging costs are given in Fig. 6, in which paging 
costs are measured by the number of cells to be searched 
before finding the MT.W hen the variation of moving direc- 
tion is high, the improvement of paging costs is more visible 
as shown in Fig. 6(a). For example, when 8, = i:, the 
reduction in paging costs due to the location probabilities 
is not as large as that of 8, = iz. This means that it is 
more important to predict location probabilities if the MTs 
are moving randomlyj. e., the movement of the MTs is not 
uniformly distributed in the location area. If the prediction 

order is higher, the paging costs can be significantly reduced 
compared to without prediction. Specifically, if the MTs are 
moving very fast and they may go to other cells in a short 
time, it is more difficult to locate the MT. Accordingly, the 
prediction of MTs' location probabilities is more effective 
and important. 

V. CONCLUSION 
In this paper, we presented a predictive scheme for esti- 

mating user mobility in wireless networks. We proposed the 
concept of zone artition which helps to identify the MTs' 
position inside a yocation area. Also, the prediction order is 
mtroduced to dynamically determine the probable cells with 
respect to the computation complexity and the QoS require- 
ments. Based on an MT's zone partition and the prediction 
order,an adaptive algorithm is develo ed to incorporate the 
MTs' historic records and the path in8rmation. In addition, 
this method takes the moving dlrection and MTs' residence 
time into account for better prediction, The simulation re- 
sults demonstrated that the signalin cost of location track- 
ing under delay hound can be signifcantly reduced with the 
user mobility prediction. 
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