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A New Random Walk Model for PCS Networks

lan F. Akyildiz, Fellow, IEEE Yi-Bing Lin, Senior Member, IEEBAMei-Ru Lai, and Rong-Jaye Chen

Abstract—This paper proposes a new approach to simplify the
two-dimensional random walk models capturing the movement
of mobile users in Personal Communications Services (PCS)
networks. Analytical models are proposed for the new random
walks. For a PCS network with hexagonal configuration, our
approach reduces the states of the two-dimensional random walk
from (3n? 4+ 3n — 5) to n(n + 1)/2, wheren is the layers of a
cluster. For a mesh configuration, our approach reduces the states
from (2n® — 2n + 1) to (n® + 2n + 4)/4 if nis even and to
(n? 4+ 2n + 5)/4 if n is odd. Simulation experiments are con-
ducted to validate the analytical models. The results indicate that
the errors between the analytical and simulation models are within
1%. Three applications (i.e., microcell/macrocell configuration,
distance-based location update, and GPRS mobility management
for data routing) are used to show how our new model can be used
to investigate the performance of PCS networks.

Index Terms—Cell, mobility management, personal communi-  Subarea 0
cations services, random walk.

Subarea 2

I. INTRODUCTION Subarea 3

Subarea 4
N Personal Communications Servic@3CS) systems, the Subarea 5
service areas are covered by radio base stations (BS’s) [12].
The radio coverage of a BS is calleccall. A mobile phone Fig. 1.
or mobile station (MS) moves from one cell to another. Most
PCS performance studies assume that the cells are configured
as a hexagonal network given in Fig. 1 or a mesh network given
in Fig. 2. To investigate the MS movements is a challenging 4
problem in PCS. For example, starting from a particular cell,
the destination cell of an MS aftérmovements is determined in
[2]. Another example is given in [15], which studied how many 4
steps an MS should make to leave a region.
Atwo-dimensional random walk model with absorbing states 413
[9] can be used to study the movements of an MS. In this model,
a state represents a cell where the MS may reside. Fig. 1 shows a A
6-subarea hexagonal cluster. The cell at the center of the cluster  subarean| 4 /3/ 2l 12| 3] 4
is calledsubarea-Q:ell. The cells surrounding the subarea(

Hexagonal PCS cell structure.

4 3

1) cells are callecsubareaz cells. There aréz cells in sub- Subarea 1 323 |4
arear except that exactly one cell is in subarea 0./Agubarea Subaren 2 L.
cluster contains cells from subarea 0 to subaneal(). The cells of
surrounding the subarea-{ 1) cells are referred to doundary 4
neighborswhich are outside of the cluster. Fig. 2 shows a 5-sub- Subarea 3 - L \

ubarea
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TABLE |
THE ACRONYM LIST

BS: Base Station

BTS: Base Transceiver Station

GPRS: General Packet Radio Service

GSM: Global System for Mobile Communication
GTP: GPRS Tunneling Protocol

MS: Mobile Station

LA: Location Area

PCS: Personal Communications Services

RA: Routing Area

Fig. 3. The hexagonal routing pattern.

given in [2]. However, the modified model has been simplified,
which introduces some inaccuracy to the two-dimension-' line 1
random walk models.

In this paper, we show how to reduce the two-dimension
random walks for hexagonal and mesh planes such that the s
plified random walks behave exactly the same as the origir
random walks. The paper is organized as follows. Section Il ¢
scribes the new random walk for hexagonal configuration. S
tion 1l shows how to group cells with the same routing pat
terns so that the states in the random walk can be reduced. ¢
tion 1V validates our model with simulation experiments. Se(
tion V elaborates on how to use a similar technique to redu
the states for a mesh random walk model. Section VI illustrat
three applications that benefit from our random walk model. Tt
acronyms used in the paper are listed in Table I.

Il. THE TwWO-DIMENSIONAL HEXAGONAL RANDOM WALK

Let us consider a hexagonal plane. We assume that an |
resides in a cell for a period, then moves to one of its neighbc
with the same probability, i.e., with probability 1/6; see Fig. &
We derive the numbek of moving steps (a step represents a
MS movement from a cell to another) from the starting cell unt
the MS moves out of the cluster.

Based on the assumption that the routing probabilities arg. 4. The type classification in a 6-subarea cluster.
equal, we observe that the cells in a cluster can be classified into
several types, where a type represents a state in the new random
walk. The term “type” is defined as follows.

Definition 1: Two cells A and B are of the same type if the

multiset of types forA’s neighbors is the same as that #8fs ~ Here we describe a type classification algorithm which sat-

neighbors. isfies Definition 1. This algorithm recursively assigns types for
A multiset is a collection of objects that are not necessaritiells in ann-subarea cluster. Basically, every cell is marked as

distinct. The multiplicity of elements has significance in the typgpe (z, 3/), where %" represents that the cell is in subarea-

definition. and %y” > 0 represents thg + 1st type in subarea- The al-
The 6-subarea cluster is shown in Fig. 4 where lines 1-3 djerithm is described as follows.

vide the cluster into 6 equal pieces. Exchange of any two piecesThe Type Classification Algorithm for anV-Subarea

has no impact on the structure of the cluster. If two cells, for eGluster:

ample, the cells marked wi# are at the same relative position Step 1) The subarea-0 cell is assigned to tpe). x — 0

on different pieces, then they are grouped together and assigned (x is the subarea of cells being labeled).

to the same type. MS’s in the cells of the same type will leave Step 2) & — = + 1. If z = n, then Stop.

the cells with the same routing pattern. Itis intuitive that cells in Step 3) Find unmarked subareacells that have onér —

different subareas should have different types. In the next sec- 1,0) neighboring cell. Label them by typér, 0).

tion, we describe a type classification algorithm based on the y < 0 (y represents thg + 1st type in subarea.

3-line symmetry concept, which satisfies Definition 1. Step 4) Lety — y + 1. If y = z, then go to Step 2.

I1l. THE TYPE CLASSIFICATION FOR HEXAGONAL
RANDOM WALK
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Step 5) Find unmarked subareaells that are the neighbors " " " »
. i o 20 30 40 50 60
of {x,y — 1) cells in the clockwise direction. Mark e
them with type(x, ). Go to Step 4. 5 /51 A 1 1
d 173 1 &\ (176
It is easy to verify that the classification algorithm has th i N 8N 16
following three properties: N\ s
@ 16 RN @
/6 )

1) Forn > 1, the(0,0) cell has six(1, 0) neighboring cells.

2,1 3,1 Lo 41
1/ v’\ . g

Forn = 1, it has six(0, 0) boundary neighbors. N Vs ‘\ N
2) For a{z, 0) cell (wherel < = < n — 1), the multiset of 16 ﬁ\\
W,

1/6

types of its six neighboring cells {§z — 1, 0), (z, z — 1), @ p AW
(z,1 mod z), {(x + 1,0), (x + 1,1}, (x + 1,x)}. For ~ 6 WY : 1
x = n— 1, the multiset of z,0) is {{x — 1, 0), {x, 1 mod 16

=

q

z), {x, z—1), boundaryz, 0), boundaryx, 0), boundary %
{(x,1 mod z)}, where “boundaryz, v)” represents the
type of the boundary neighbor out of the cluster. 43
3) For a{z,y) cell (where0 < y < z—1),ifz <n -1, i
the multiset of types of its six neighboring cells{isc — ludiss
1,y—1),{x—1,ymod(z — 1)), {x,y — 1), (z,(y + 1) 1
modz),{z + 1,4),{x + 1,y + 1)}. Forz = n — 1, the 5.4 1A
multiset of (z,y) is {{z — 1,y — 1), {(x — 1,y modz —
1)>7 <$7y - 1>7 <$7y +1 mOdI'>! bOUndary(.’L’,.’E - y>1
boundary{z,z — y + 1 modz)}.

The above properties ensure that the classification algorittiig. 5. State diagram for a 6-subarea cluster.
satisfies Definition 1.

Fig. 4 illustrates the types of cells for a 6-subarea cluster clagil of the same type. Since eadh 0) cell has two(1, 0) neigh-
sified by the algorithm. Cells are assigned to types,), where bors, state (1,0) has a transition back to itself with probability
“z” indicates that the cell is in subarea-andy > 0 represents p, o) 1 oy = 1/3. For0 < j < n—1, pn_1j),(n.5) iS the prob-
the y + 1st type in subarea- The cell in subarea-0 is of the ability that the MS moves fromé& —1, 5) cell to a neighbor out
type (0,0). The six subareas-1 cells are of the same §ip6) of the cluster in one step. The absorbing statej) loops back
because they have the same neighboring types (i.e400§  to itself with probabilityp,, ;) (» ;) = 1,for0 < j <n — 1.
two (1,0) cells and three boundary neighbors). For a 2-subarea_ et S(n) be the total number of states forarsubarea cluster
cluster, a subarea-2 cell may have 2 or 3 boundary neighbors aaddom walk. Ther5(1) = 2 and ifn > 1
is assigned to typ&2, 1) or (2, 0, respectively. By following the
same method, we mark all cells subarea by subarea. Itis easy to
verify that the resulting type assignment satisfies Definition 1.
For example, consider cell$ and B in Fig. 4. These cells are
assigned to typé2, 0). Both multisets of types fad's and B’s
neighbors ard (1,0}, (3,0), (3,1), (3,2), (2,1), (2,1)}. Thus,
A andB are grouped together and are assigned to {gp@).

W
S

n(n + 1)'

S(n) = 5

The transition matrixof this random walk is arb(n) x S(n)
matrix P = (p(z y), (2 4)) Where

Based on the type classification and the concept of absorbing 1(/)6 1}3 1(/)6 1(/)3 8 . 8 8 8
states, the state diagram of the random walk foresubarea 0 1/6 0 1/31/6 --- 000
cluster (wherer = 6) is shown in Fig. 5. In this state diagram, 0 1/31/3 0 0 000
state(x, i) represents that the MS is in one of the cells of typel” = ) X ) . . )
(z,y), where0 < < n and0 < y < = — 1. State(n, 5) s s s S
represents that the MS moves out of the cluster from étate ¢ .0 0 0 0 --100
1,7),where0 < j < n—1.For0 <z <nand0 <y < z-—1, c 0 0 0 0 --010

o o o0 O 0 ---001

stateqx, y) are transient and far < j < n — 1, stategn, j) S(n)xS(n)

are absorbing. N . .
¢ Forn = 6, S(n) = 21, and in this matrix, the elements in

Let pz,y),(=v,u) b€ the one-step transition probability fromeach column and row are listed in the followitg, ) order:
state(x,y) to state(’,y/); i.e., the probability that the MS (g, 0), (1, 0), (2, 0), (2, 1), (3, 0), (3, 1);-, (6, 3), and (6, 4).
moves from &z, y) cell to a(z’,y’) cell in one step. Since all we use the Chapman—Kolmogorov equation [18] to compute
neighbors of the0, 0) cell are(1, 0) cells, the process movesthe probability for the number of steps that an MS moves from
from state (0, 0) to state (1, 0) with probabiljty, o),(1,0) = 1.  a cell type to another. Fdr > 1, let
A (1,0} cell has on€g0,0) neighbor, and the transition from
state (1, 0) to state (0, 0) has probability o), 0,0y = 1/6. The p) _ P, if k=1 1
transition back to a state itself occurs when the MS moves to a “1Px PRV it g > 1. (1)
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An elementp(”) | . in P*) is the probability that the 7 TABLE Il
random walk moves from state, ) to state(z’, ') with exact COMPARISON g—?ﬁ;’ﬁ;ﬁ;ﬁ;éﬂﬁi?%%h[l?::éﬁFZAgr?o'\f\luLATION) FOR

k steps. FoO < j < n — 1, definepy (), (n,5) @S

(z,9) (0,00 1(1,0) [(2,0) |21

, _ K2y | 20.157 | 28.158 | 25.167 | 26.156

N SR fork =1 Rizy) | 20.08 | 26.000 | 25.130 | 26.104

Phlea ) =3 00 k=D s Error | 0.26% | 0.24% | 0.15% | 0.20%
(®,9),(n,5) (®,9),(n,5) 5 (z’y) (3, 0) (3’ 1) (3,2) (4’0)

) Koy | 20.240 | 22.144 | 22.144 | 13.658

Kz, | 20.224 | 22.099 | 22.101 | 13.627

Thenpy, (z.4).(n.5) IS the probability that an MS initially re- Error | 0.12% | 0.20% | 0.19% | 0.23%
sides at gz, ) cell, moves into dn — 1, 5) cell at thek — 1st (zy) |41 [(42) |(43) |(50)
step, and then moves out of the cluster at/ttrestep. Our new Kay) 16'1?{1 16.961 16‘191 6'3‘2’

hexagonal random walk model reduces the states fiorh + I}gg:r) (1)61‘}%? (1]62‘3}%1 060';;? ?0 05
i : : ] . : ]

3n—>5)ton(n+ 1)/2. In'the next section, we validate the new ) (6D 162 (63 |69
random walk by simulation experiments. Kz | 8589 | 9.548 | 9.548 | 8.589
K,y | 8577 | 9.540 | 9.526 | 8.583

Error | 0.14% | 0.08% | 0.23% | 0.07%

IV. PERFORMANCE COMPARISONS

Suppose that an MS initially resides atf& y) cell. Then

the expected number of steps that the MS stays in a 6-subarea TABLE IlI
cluster is computed as COMAPRISON OF L.,y (ANALYSIS) AND L, 5 (SMULATION) FOR
6-CLUSTER HEXAGONAL CONFIGURATION
[e9) 4
_ , EY) [6,0 (6D [(5,2 [6:3) |59
K(ﬂf,y) - Z Z k " Pr(2,),(6,9) ©) Ly | 52.014 | 52.5664 | 60.7217 | 60.7217 | 52.5664
k=1 j=0 Lz | 51.5089 | 52.4964 | 60.8102 | 60.8025 | 52.4644
Error | 0.97% {0.13% | —0.15% | —0.13% | 0.19%

Equation (3) is validated by simulation experiments fol-
lowing the procedure described in [19]. In thi& simulation

experiment, we simulate the movement of an MS in a 6-cluster
to compute the numbék,, (i) of steps that the MS moves 1/4
from a (z,y) cell to a boundary cell (outside the cluster). A
Let K, be theK, , value obtained from\/; simulation |
experiments, where 14 = > 1/4
- 1 My B l
Koy =31 2 b (0)- (4)
L) 1/4

We calculatef( . ,, with A7, = 1200000 simulation experi-
ments and use 200 truncated term(p. ,, to approximate the
infinite summations. Table 1l shows the results from (3) and (4).

The discrepancy between (3) and (4) is within 0.3% for all tegkctions. The routing pattern for a mesh cell is shown in Fig. 6.

Fig. 6. The mesh routing pattern.

cases. We assume that an MS resides in a cell for a period, then moves
The expected number of steps that the MS leaves the clustebne of its neighbors with the same probability, i.e., with prob-
through a(5, z) cell is computed as ability 1/4.
) . Fig. 7 illustrates the types of cells. Following a type assign-
T 2= ment procedure similar to the one described in the previous sec-
Lz = Z Z Z k- Pr,(2),6.2)- (®) tion, cells are assigned to typés, v}, wherex indicates that
k=1 2=0 y=0 the cell is in subarea; andy > 0 represents thg+ 1st type in

bareas.
Based on the type classification and the concept of absorbing
cates, the state diagram of a 4-subarea mesh random walk is
(shown in Fig. 8. In this state diagram, stdte y) represents
that the MS is in one of the cells of tyge, ). State (4, 0) is
an absorbing state and represents that the MS moves out of the
cluster.
V. TWO-DIMENSIONAL MESHRANDOM WALK Let p(a,y), v,y DE the one-step transition probability from

The two-dimensional mesh random walk model can be simstate(x, y) to state(z’,4'); i.e., the probability that the MS

plified following the same concept described in the previounoves from &z, ) cell to a{z’, ') cell in one step. Then the

Equation (5)is also validated by simulation experimentg.u
From the simulation experiments, we compLﬁ%@ using
an equation similar to (4). Table Il shows the results deriv
from analytic computations and simulation experiments. T
discrepancy between them is within 1% for all test cases.
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TABLE IV
3,0 COMPARISON OF K¢,y (ANALYSIS) AND K (,. 5 (SIMULATION) FOR
4-CLUSTER MESH CONFIGURATION

31020 1 3.1 @) [ 0,00 [(1,0) [(2.0)
K, | 9681 | 8681 |5983
K, | 9674 8688 |5.995

3.1 21110 2.1 3.1 Error | 0.04% [ 0.01% —0.08%
(z.y) | (2,1 (3,0) (3,1)

30 120 [ 1.0 ] 00| L,O| 20| 3,0 Kz | 7-529 2496 | 4.378
Ko, | 7526 | 2497 | 4.387

Error | —0.03% | —0.16% | 0.07%

30 | 21| 10| 21| 31

311 20| 31

3,0

Fig. 7. Type classification for a 4-subarea mesh cluster.

1/4

Fig. 8. State diagram for a 4-subarea mesh cluster.

transition matrixof the 3-subarea random walk is a<77 ma-
triX P = (p(a,y),(a',y)) Where

Fig. 9. Type assignment of microcells in three neighboring macrocells.

0 1 0 0 0 0 0 eling, distance-based location update modeling, Gederal
/4 0 1/4 1/2 0 0 0 Packet Radio ServioggPRS) mobility management modeling.
o 1/4 o 0 1/4 1/2 0 In a microcell/macrocell PCS network [4], [11], [20], the ser-
P= 0 1/2 o0 0 0 1/2 o0 . vice area is covered by both microcell BS’s and the macrocell
0 0 1/4 0 0 0 3/4 BS’s. A macrocell overlays several microcells to increase the
0 0 1/4 1/4 0 0 1/2 circuit capacity. An example of the microcell/macrocell config-
0 0 0 0 0 0 1 uration is the dual-band GSM network deployed by Far EasTone

o in Taiwan [15]. In this network, there are two types ludse

In this matrix, the elements in each column and row are listénsceiver station§BTS'’s). The DCS 1800 BTS's serve for
inthe following(x, ) order: (0, 0), (1, 0), (2, 0), (2, 1), (3, 0), (3,microcells, which operate at 1.8 GHz. The GSM 900 BTS'’s
1), and (4, 0). Itis clear that our new mesh random walk modsdrve for macrocells, which operate at 900 MHz. The typical
reduces the states frof@n? — 2n + 1) to (n? + 2n + 4)/4if  coverage area of a microcell is between 0.5 and 3 km, and the
n is even and tqn? + 2n + 5)/4 if n is odd. Following (1) area of a macrocell is between 3 and 10 km. In modeling mi-
and (2), we computgy, (,.,,4,0)- The state diagram in Fig. 8 is crocell/macrocell configuration, it is required to derive the MS
validated by simulation experiments by comparing fig ,, residence time distribution at a macrocell based on the MS resi-
andf(@,w values defined in (3) and (4). Table IV shows thaflence time distribution at the micr_ocells. Our new random walk
the discrepancy betwed,,, ,) andf{@, ,) is within 0.2% for model can be used for the derivation of the macrocell residence

' time distribution. The first step is to classify the types of micro-

cells within a macrocell. Fig. 9 plots three neighboring macro-
cells and type assignment of microcells in these macrocells. For
a specific type of microcell, we use (2) to compute the number

This section describes three applications that can utilize aefrmicrocells that are visited before the MS moves out of the
random walk model: microcell/macrocell PCS network modnacrocell. The residence times of these microcells are accumu-

all test cases.

VI. APPLICATIONS FOR THENEW RANDOM WALK MODEL
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lated to derive the time before the MS leaves the macrocell. The — 5) to (n? + 2n +4) /4 if n is even and tgn? + 2n +5) /4

modeling details can be found in [15]. if n is odd. Simulation experiments were conducted to validate
Another application of the new random walk is the modelinthe analytical models. The results indicated that the errors be-

of distance-basetbcation update scheme. In existing PCS netween the analytical and simulation models are within 1%.
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