
980 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 8, AUGUST 1996

Augmented Binary Hypercube: A New
Architecture for Processor Management

Hari Lalgudi, Ian F. Akyildiz, Fellow, /€E€,

and Sudhakar Yalamanchili, Member, IEEE

Abstract-Augmented Binary Hypercube (AH) architecture consists of
the binary hypercube processor nodes (PNs) and a hierarchy of
management nodes (MNs). Several distributed algorithms maintain
subcube information at the MNs to realize fault tolerant, fragmentation
free processor allocation and load balancing. For efficient
implementation of AH, we map MNs onto PNs, define and prove
infeasibility of ideal mappings. We propose easily implementable non-
optimal mappings, having negligible overheads on performance.
Extensive simulation studies and performance analysis conclude that
these algorithms realize significantly better average job completion
time and higher processor utilization, as compared to the best
sequential allocation schemes and parallel implementation of Free List
[7]. AH algorithms can be tuned or adapt to the job and system
characteristics, and resource management traffic.

Index Terms-Augmented binary hypercube, update algorithms, ideal
mapping, resource management traffic.

+
1 INTRODUCTION
THIS paper focuses on two resource management problems for the
binary hypercube-

1) processor allocation (PA), and
2) load balancing (LB).

The processors are resources to be allocated to the set of tasks in a
job. A subcube is allocated, instead of arbitrary processors, to effi-
ciently manage resources and minimize communication over-
heads. However, this causes fragmentation and yields lower aver-
age processor utilization. Static or dynamic load balancing can
increase processor utilization by reducing fragmentation. The to-
pology makes it nontrivial to detect the availability of a subcube.
Determining the maximum size available subcube is NP-complete
[8] . Many of the first approaches utilized off-line serial computa-
tions for processor allocation/deallocation [2], [7], [3]. For scalable
and reliable solutions to PA and LB, the algorithms must be paral-
lel and on-line. Parallel implementations of of the above serial
algorithms have been proposed in [21, [31, [71, but require dedi-
cated processors.

Our approach is to logically augment the binary hypercube
with Management Nodes (MNs). Each MN contains the corre-
sponding subcube status information. Links are introduced be-
tween MNs and processor nodes (PNs) forming a ternary hyper-
cube topology. A class of fault tolerant algorithms search and up-
date the M N status information. These algorithms realize distrib-
uted, fragmentation-free, fault tolerant, processor allocation and
load balancing. From a practical standpoint, the topology is real-
ized by mapping MNs onto PNs.

We propose and evaluate several mapping functions in terms
of search, update, completion times, and utilization.

H. Lalgudi is with Zeitnet Inc., 5150 Great America Parkway, Santa Clara, CA
95054. E-mail: hari.lalgudi@zeitnet.com.
I.F. Akyildiz and S . Yalamanchili are with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
E-mail: (ian, sudha)@ee.gatech.edu.

Manitscript received Aug. 3,1993; revised Oct. 29,1995.
For information on obtaining reprints of this article, please send e-mail to:
transcomQcomputer.o~g, and wference IEEECS Log Number C96069.

2 THE AUGMENTED BINARY HYPERCUBE
2.1 Definitions of Augmented Hypercubes
The generalized r-ary hypercube consists of r" number 'of nodes,
where each node ui has an m-digit r-ary representation im-, ... io,
where i, E (0, 1 ..., r - 11 for 0 5 p I m - 1. A communication link
exists between two nodes vi and uj if and only if the m digit repre-
sentation of vi and vj differ only in one digit position. The resulting
network is a regular graph with degree (r - l)m, node connectivity
(r - 1)m and diameter m. The binary hypercube is a special case
when r = 2.

DEFINITION 1 (AH). Augmented Binary Hypercube consists of PNs
and MNs. A node vi has an m digit terna y representation im+ .. . io,
where i, E {0,1, '1 for 0 2 p 2 m - 1.

DEFINITION 2 (PN). A Processor Node ui, represented by im-l ... io, is
an A H node, with the constraint i,, E {0,11 for 01 5 p i m - 1. PN
corresponds to a bina y hypercube node.

DEFINITION 3 (MN). A Management Node uI, of AH, is the center of
the k dimensional subcube, S,;, of a binary hypercube. In the m

digit representation of u;, (ip E (0, 1, 'I, 0 I p 5: m - l), k of the
digits i,, , . .. , iim E {*I and the remaining (m - k) digits E (0, 11.

Subcube S,; is spanned by the dimensions jl, . . ., j m ,

DEFINITION 4 (d) . d(i7,) = ~ ~ ~ o l g k , where gk = 1 i f f i k E {*I, and = 0
otherwise.

DEF-I"ON 5 (center). The vertex vj is called the center of fhe subcube,
S, of dimension d(vj), along the dimensions k such that j k E {*I.

All links in the binary hypercube are included in AH. Links be-
tween the MNs and between MNs and PNs can be added in either
of the following two ways.

CASE (a) AH1. Two nodes u, and and u], with representation i,-, ...
io and jrl ... io, have a link if 3k, i, = * and j k E (0, 1) and for
all1,O SI < { m - 1) and I # k, i, = ji-

CASE b) AH2. Two nodes u, and z; have a link if the m digit repre-
sentation of ui and uj differ only in one position.

In Case(a), u, is connected to uj, if and only if, S, E Sui and d(vJ

= d(uj) + 1. In Case@), vi is connected to uj, if their m-digit ternary
representations differ in one position.

The properties of AH1 and AH2 is stated in 191, and is summa-
rized as follows. Both AH1 and AH2 have 3m nodes, 2m PNs and
(3" - 2") MNs. AH1 has m(3m-* + 2"-') links, degree of 2m for PN
and (m + k) for a MN at the center of a k dimensional subcube, and
diameter of 3m/2 . The properties of AH2 follow from the ternary
hypercube of the same dimension, namely m3* links, degree m and
diameter m. For PA, the communication cost in AH]: is not affected
due to increased diameter. AH1 has k independent paths of length
k, and (m - k) paths of length (k + 31, between a M,N vi and PN uj,

where d(vJ = k and vi E S . AH2 has m node disjoint paths be-
tween any two nodes. Only k paths are used for information up-
date. Additional AH2 links allow fault tolerant routing.

By definition, there is an M N ui for every possible subcube Svi .

The status of Sui and its constituent PNs is maintained at M N q,
and is obtained by exchanging information with other MNs con-

"i

0018-9340/96$05.00 01996 IEEE

mailto:hari.lalgudi@zeitnet.com
mailto:sudha)@ee.gatech.edu

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 8, AUGUST 1996

Buddv I 2"+' - 1 I O(2")

981

Q(2m) I op") I first-fit I No

I I

Fig. 1. Comparison of various strategies.

tained in Sui it. Any M N can be viewed as the root of a hierarchy
of MNs with PNs at the leaves. The ratio of PNs to the total nodes
(NN), (2/3Im, shows that with increasing m, the number of MNs,
links and the degree of each node increases rapidly. Secondly, the
same distributed algorithms should be implementable on existing
hypercubes. Hence we do not realize M N s as distinct physical
nodes, but map the MNs onto PNs.

2.2 Mapping of AH Nodes onto Binary Hypercube Nodes
DEFINITION 6 (r). The function r : Rl H R2 (where R, = {O, ..., 3m}

and R, = (0, ..., 2m)) maps the nodes of the AH1 or AH2 to the
PNs of AH1 or AH2.

This mapping implies decreased parallelism in update algo-
rithms (Section 3) and increased overheads on the PNs due to M N
functions. An ideal mapping function, reducing these overheads, is
defined as follows:

DEFINITION 7 (ri). Ideal mapping function r, is such that, if Ti(vl) = m,,

1) Parallelism Constraint:Ifd(v,) = d(v,), then m, # m2.
2) Dilation Constraint: If d(v,) = d(vJ + 1 and there exists a

link between v, and v2, then there is a link between m, and m2.
The parallelism constraint ensures that there is no loss of par-

allelism by mapping M N s of same level on different PNs, although
there is a loss of bandwidth. The dilation constraint ensures that
adjacency of nodes in AH is preserved and hence, messages trav-
erse the same number of physical links in AH and mapped AH.

THEOREM 1. An ideal mappingfunction, Ti, does not exist.

PROOF. Refer to [91. 0

Hence, we propose nonideal mapping schemes, preserving di-
lation, not parallelism constraint. This results in decreased paral-
lelism but preserves message delays. The mapping and inverse
mapping is implemented with a mask table for each PN, with
fields as shown in Fig. 2c. On receiving a message, the PN searches
the mask table for the M N , to which the message is addressed. It
completes the requisite action and updates the M N entry.

Let T(vJ = MI, where the m digit representation of vi is im-, ... io,
and that of M j is jmT1 ... io, and i, E (0, 1, *) and j , E (0, 1) (k = 0,
m - 1). The mapping strategies are:

rib2) = m2,

1) MaskMapping: If ik E (0,1), then j k = 0, and if ik = *, thenj, = 1.
2) Star Mask Mapping: If ik E {0,1], then j k = i,, and if i, = *, then

3) Run Mask Mapping: Let the dimension of vi = d(v,).
j k = 1.

If (Vl (1 < k), ir E (0, l)), if (i, E {O, l)), then j k = i,, and if (ik = *), then j , = 1.

Else if (Vl (I 2 k)) , if E (0, 11, then if (i, E (0, l}), then], = i,, and if
(ik = *), then j k = 1.

Else if (39, Vl (I 5 9). if E {O, 1)) and if(k > (9 + d(vJ)), then j , = 1, else
jk = 0.

In Musk Mapping, the M N s at the same level map to different PNs.
However, a large number of small k dimensional nodes (2m"), map
to the same node. In Star Mask Mapping, these (2m-k) nodes map
separately onto different nodes, lowering mapping overheads.
However, two MNs, of same dimension, having * and 1 in the
same position map to the same PN, reducing parallelism. In Run
Mask Mapping, all digits, between the first and last digit having *
(run of digits), are masked to 1. The other digits retain the same
values. This strategy violates the dilation constraint but it reduces
the overheads on parallelism. The mapping distribution can be
found in [9].

3 lNFORMATlON UPDATING IN THE AUGMENTED
ARCHITECTURE

We propose efficient distributed algorithms for maintaining subcube
information in AH for PA and LB. M N D, maintains S,, specific infor-

mation. For PA, it is the number of available PNs in Sot , avail(v,). For

LB, it is the load on Sui , load(v,). For PN v,, avail(v,) 5 1 if v, is available,

0 otherwise. For MN v,, avaiZ(v,) = E,=, avail(v,), where v, is a PN,
2m

D, E S , and avail(vJ = 1. For MN v,, load(vl) = ~ ~ ~ , l o a d (o ,) , where
V I

D, is a PN, D, E S, . The following phases search and update this

information:

Phase 1 (Search Phase): PA searches for the optimal subcube (first
or best fit) with available nodes for allocation. LB searches for
the most heavily and lightly loaded subcubes.

Phase 2 (Updating Stage 1): On allocation of tasks, PA updates
subcube information. LB updates load information on the PNs
and M N s on allocation or relocation of tasks.

Phase 3 (Updating Stage 2): Subcube information must be up-
dated in M N s for deallocated processors or those freed by task
relocation.
Fig. 2a shows the Phase 1 template and Fig. 2b that of Phases

2/3. The search phase begins at H,,, MN at the center of the hyper-
cube. H, sends a search message with m and k (k < 2"). The update
phase begins at the allocated/deallocated PN. For consistency,
either a search phase or multiple update phases can be in progress
at any time. We propose algorithms which optimize costs, in terms
of the number of messages sent.

1

982 IEEE TRANSACTIONS ON COMPUTERS. VOL. 45, NO. 8, AUGUST 1996

If (recvdMsg == {'search', q, vp, m, k)) {
/" up = parent node(sender), m = reqd. subcube size,
k = appln. specific parameter "/
If (d(v,) == m) /" C1*/

Else If (d(v,) > m)
(set replyMsg based on info. at v,, kl /* S1 "/

{Either set replyMsg based on info. at v,)
{Or VuI s.t. d(v,) = d(v,) - 1 and SD c S,

sendMsg(vJ, {'search', vI, vv m, k]) ;
recvReply(reply);
{set replyMsg based on reply) /* 53 "/

/" 52 */

I '

I

{Either Do nothing (algorithm specific choice))
[Or Vvl s.t. d(vI) = d(v,) - 1 and S, c S,,

sendMsg(v,, ('search', vl, D,, m, kl);
recvReply (reply);
{set replyMsg based on reply] /* S4 */

Else /" d(vJ < m "!

J

1
sendReply(vp, replyMsg);

I
(a) Search phase at node v,

Foreach allocated processor u,,
SendAllocatedMsg(v,, {'update', vj, vi]);
/" where d(vj) = 1, and v, E S,. "/

If ' (recvdMsg == {'update', vj, v,]) {
(Update info. at vl) /* 55 */
AC,, = (AC, + l)mod(d(vj));

If (A C , == O) {

I

Foreach MN vi

I

[Update vl info. at vj) /* S6 */
VU, s.t. d(v,) = d(v,) + 1 & S, c SVc

SendAllocatedMsg(v, ('update', vc, vi]);
I / " End of If (Allocation Countev is 0) */

I

) /* End of Updating Algo for MN vI */

(b) Update phase for immediate update

(c) Mask table on each PN

Fig. 2. Search and update phases and mask table.

3.1 Algorithm 1 : Immediate Update

MN vi maintains consistent S,, information and is immediately
informed of any state change of a PN E S . This strategy is useful
when search costs dominate update costs.

DEFINITION 8 (CN). Nodes v, and vL1 are Complementary Nodes

vi

(CN), if
d(vJ = d(vi,) = d (v j) - 1, SOj c S,, , Sui, c Sui and SVi nS,ll = C .

Phase 1: For PA, in Fig. 2, k is the number of processors to be allo-
cated. When avail(vi) < k, the processors are allocated in two
disjoint smaller subcubes. S1 and S2 check if avail(v,) 2 k. If so,
replyMsg indicates success if vi can be allocated, failure other-

wise. Allocation begins at zli, such that, avail(v,) 2 k, VuI, d(v,) =

d(q) - 1 and S, c S.. , amil(z$ < k. M N vi sends allocate mes-

sages to two CNs v, and vi,, where S, ,S c: S D 1 , and d(vJ =

d(v,,) = d (q) - 1. 52 also sends allocate messages to the CNs. S4
selects ztI and ~ 7 , ~ and receives the reply. Allocate messages ter-
minate at PNs. Multiple messages cannot reach the PNs, as the
strategy recursively allocates PNs in disjoint subcubes.

For LB, k indicates if the search is for a maximal or minimal
loaded subcube. S1 sets replyMsg to load(v,). Based on k, 53 checks
if the load in yeply is greater than the maximal load or is less than
the minimal load of the previously checked m-dimensional sub-
cubes, and accordingly sets replyMsg.

Phases 2 and 3: The updating propagates from PA7 to H,. MN vl has
d(vJ node disjoint paths of length d(v,), to I" vi, which is allo-
cated/deaUocated. MN vi has a moddo-d(vj) counter to count re-
ceived update messages, and allocation/deahlocation at vj is
complete on the receipt of d(vj) messages. The counter ensures the
correctness of the distributed algorithm, even when multiple
nodes in Spl are allocated simultaneously, AC, is the Allocation

Counter of node zi In Fig. 2b, for PA, S6 decreases avail(vi) in
Phase 2 and increases avail(vi) in Phase 3. For LB, the message
contains lond(v,), which is incremented with each allocation. 55
increments load(vJ in Phase 2, and decrements loa!d(v,) in Phase 3.

I ' i

1

I

3.2 Algorithm 2 (Lazy Update)

M N v, does not have consistent S, information. In the search
phase, it is collected on demand hom the PNs. When update re-
quests are high, the updating messages are not sent, reducing the
updating costs at the expense of higher search costs.

Phase E (Search): The algorithm is the same as the Phase 1 of Sec-
tion 3.1, except that the C1 in Fig. 2 is replaced by the following
condition: {If (visifed(vi))/" C2 * / I .
For PA and LB, S1 in Fig. 2a is as follows: If (d(v,) = m) {If

(avail(v,) 2 k), replyMsg indicates success with node value as v,].
Else If Mu,) < m) replyMsg contains avail(v,). Else If (d(v,) > m)
{since u, is already visited, replyMsg has previous search result.
avail(v,) is set to replyMsg).

53 is as follows: If (d(vi) 2 m) {Let vi, and vl be CNs. If S, in-
I'

formation is available in replyMsg, then visited(v,) is set and avail(vi)
= avail(vl) + az.ail(vj,) or lond(v,) = Zoad(vj) + load(vjl)}, else replyMsg is
set to avail(vj) or load(v,), and search message sent to vi,. If (d(v,) = m
and auail(vj) t k) replyMsg indicates success at vi else failuve).

If @(vi) < m) {replyMsg contains load(vj) or av,ail(v,).} For PA,
search terminates after vj and z;, information is obtained. For LB,
depending on k, the search continues for all smalller dimensional
subcubes to find minimally or maximally loaded subcubes

Phases 2 and 3: No information updating is done.

I

3.3 Algorithm 3 (Intermediate Update)
DEFINITION 9 (u). Update height (u) is the size of the subcube, such that

an MN vi keeps consistent information, by constant updating
during allocation/deaZlocation, iffd(v,) I u.

A node uz executes Immediate Update if d(vJ < 11 and Lazy Up-
date if &vi) > u. By choosing u, it allows trade-offs between the
search and update costs.

-,
IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 8, AUGUST 1996 983

3.4 Algorithm 4 (Adaptive Update)
DEFINITION 10 (wavefront). The wavefront consists of nodes main-

taining consistent information, where update and search mes-
sages, for collecting consistent information, terminate.

A node v, executes either the Immediate or the Lazy Update,
depending on the fraction of the search to the total number of
messages, a 7 , maintained locally. Let a!,m and a:gh, be the cut-

off limits for v, (0 < a? < cczgh). When a$rr < slow, ZI, extends the
wavefront to the centers of the smaller dimensional subcubes, by
sending messages to them to use Lazy Update, thus saving on up-
date costs. When a 7 > ahlgh, v! contracts the wavefront to the

centers of the larger subcubes, by changing to Immediate Update,
thus saving search costs. This strategy can adapt to unknown job
characteristics.

The PA schemes in [21, [7], [31 involve identification of an m
dimensional subcube such that 2"-' I k < 2", causing fragmenta-
tion. Our distributed allocation strategies are fragmentation free,
(similar to [l]), as avaiZ(v,) allows

81

V I

1) allocation in partially allocated subcubes of D,, and
2) partitioning of tasks to vl, when avazl(vJ t k, avail(v,) < k,

S, E S, andd(v>>m.
1 1

4
Since static and dynamic LB use PA, we study only PA. We com-
pare Buddy, Modified Buddy, Maximal Set of Subcubes (MSS) 151,
Prime Cube (PC Graph) [ll], Gray Code scheme (GC) [21, Tree
Collapsing scheme (TC) [31, Free-List scheme (FL) 171 with AH in
terms of time required for allocation, deallocation, space complex-
ity and number of subcubes recognized (note k < 2m, the size of the
subcube required). The cost in AH is the time spent in sending or
receiving messages. Unlike centralized algorithms, the perform-
ance of AH is dependent on the message delay, which depends on
request rates, cube sizes, traffic patterns, queuing at intermediate
nodes, buffer sizes, routing algorithms etc. GC, TC, and FL are
centralized whereas AH algorithms are distributed. Only AH takes
into account the job and system characteristics, e.g., 1, q, u, p.

4.1 Complexity Analysis
Lazy Update and Immediate Update are special cases of Intermediate
Update algorithm, when u = 0 and m, respectively. Adaptive Update
costs are bounded by the updating costs of Immediate Update and the
search costs of Lazy Update. Hence, we only analyze the worst case
costs (WC) for the Intermediate Update as follows: during Phase 1,
messages can only reach level u. Any node v, has to send to z;, at
most d(vJ messages (where S, E S U 1 , d(v,) = d(vJ - l), leading to the

recurrence equation: WC(v,) = d(vJ x WC(v,), if d(vJ > u and WC(v,) =

Constavtt if d(v,) = u. Hence the search time complexity is O(n!/u!).

DEFINITION 11 (p). "Max. Message Time" or p is the maximum time to

WC for Phases 2 and 3, for k nodes, is when the update messages
for two nodes do not overlap. For messages to reach vf, where d(vJ =
u, WC(vJ = O(k.u.p). However, due to concurrent updating, the av-
erage delays are far lower than the worst case costs.

4.2 Simulations
We allocate 1,000 jobs on a 32 node hypercube. We assume the job
arrival rate and service times to be Poisson and exponentially dis-
tributed, reflecting the memoryless property of the jobs, and sub-

PERFORMANCE ANALYSIS OF THE ALGORITHMS

1

send a message between two neighboring nodes.

cube sizes to be uniformly distributed, with the service time of
each PN, in the allocated subcube, same as the job service time.
The jobs arrive at H, and are queued up if they cannot be allocated
PNs immediately. In Immediate Update search is conducted only
when avail(H,) t k. For other algorithms, on failure, search is re-
peated after some time. The performance measures are: t,, the av-
erage completion time, ts, the search time, tu, the update time, pu,
the utilization of PNs, and queuing times (all plotted with 90%
confidence intervals averaged over 20 runs, in terms of p, except
utilization). Let R be the average interarrival time, q, the average
completion time, and s,, the mean subcube size of jobs.

Fig. 3a shows t,, tu, t, as a function of u, in Intermediate Update.
The end points correspond to the Lazy and Immediate Update. The
assumptions are: R = lop, q = loop, and s, = 8 (three-dimensional).
The startup transients are negligible with these parameters. When
u increases, tu increases but t, decreases. Consequently, the t, and
queuing times shows a minimum between 0 and 5. As the updat-
ing costs dominate the search costs, pu decreases with increase in u
191. The search and update overheads are very low for R, 77 - p.

500
450
400
350 Update time

Compl. time 300
ch time (Error) 250

200 te time (Error)
1. time(Error) 150

50
100 * b e

0 1 2 3 4 5
u (Intermediate Algorithm)

4 -

0 5 10 15 2 0 2 5 30 35
Processors per Job

(b)

Fig. 3. Performance of (a) completion time with u, (b) completion time
with s,.

Fig. 3b shows t,, tu, t, as a function of s,. Jobs with large s, have
fine grain parallelism, and those with smaller s, have coarse grain
parallelism. The assumptions are: Total service time of a job is
constant, i.e., 77f - 1 / s,, where qf is the mean service time of a
task, R = lop, q = 1OOp (for a job requiring all 32 nodes). Note that
we omit confidence intervals to aid clarity in these graphs, and
they are similar to Fig. 3a.

For Lazy Update, tu = 0. With increase in so t, (and hence t,) de-
creases (due to longer w and queued jobs), reaches a minimum,
and then increases (due to inadequate available processors). For
Immediate Update, tu increases, and t , increases and then decreases,
with s,. Hence t, increases and then decreases. Here tu increases

984 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 8, AUGUST 1996

due to larger A4Ns to be updated. WC is higher than simulation
values, for t, as compared to t, (Fig. 5b). For Immediate Update, pu
decreases rapidly with s, as compared to Lazy Update, as more
update messages block allocation of queued jobs (Fig. 4a). Hence
Lazy Update is better for jobs with larger s,, and Immediate Update
for jobs with smaller s,.

1 U ’ I I I . I

WJil. (Parallel FL) =~

0 . 4

0 . 2

0

-

-

0 5 10 15 20 25 30 35
Processors per Job

Comp. time (no mapping)
100 Comp. time (star mask) +--

Comp.time(Mask) - Comp.time(run mask) e I Util(star mask)
10

0 5 10 15 20 25 30 35
Processors per Job

Fig. 4. Performance of (a) utilization with s,, (b) completion time/utilization.

Adaptive Update adapts to U when U is difficult to estimate and
may vary with time. tu is lower when a:: is close to a?, as a 7
adapts faster to U 191. However, a tightly constrained a has insta-
bility problems.

4.3 Performance of Update Algorithms under Various

For large I I and D (over 100,000 ,U and l,000@, mapping overheads
are negligible. Fig. 5a shows t, with s, for a sequential job (7 =
4,000,~, I I = 1,000,~). Star mask and run mask have similar over-
heads. Mask mapping shows the best to, for small sc. Mask map-
ping scheme and jobs with small s, are suitable for mapped im-
plementation.

Update algorithms also perform better than sequential algo-
rithms [9].

Mapping Strategies

5 CONCLUSION
We have proposed an augmented architecture and algorithms, for
efficient processor allocation and load balancing in binary hyper-
cubes. The cost, performance and sensitivity of the algorithms
indicate the following: Intermediate Update algorithm performs
better than Lazy and Immediate Update algorithms, with Lazy Update
suitable for fine grain parallelism and Immediate Update for coarse
grain parallelism. Adaptive Update is useful when the job charac-
teristics are not known or change with time.

0.001
0 5 10 15 20 25 30 35

Processors per Jolb

orst Case Search

Worst Case

0 1 2 3 4 5
u (Intermediate A l g o l - i t h)

Fig. 5. (a) Searchhpdate time, (b) simulation vs. worst case.

ACKNOWLEDGMENTS
We would like to thank Dr. Shahram Latifi and the referees for
their useful comments.

REFERENCES
I. Ahmad, A. Ghafoor, and G.C. Fox, ”Hierarchical Scheduling of
Dynamic Parallel Computation on Hypercube Illulticomputers,”
J. Parallel and Distributed Computing, vol. 20, no. 3, pp. 317-329,
Mar. 1994.
M.S. Chen and K.G. Shin, ”Processor Allocation in a N-Cube Multi-
processor Using Gray Codes,” IEEE Truns. Computers, vol. 36, no.
12, pp. 1,3961,407, Dec. 1987.
P.J. Chuang and N.F. Tzeng, “A Fast Recognition-Complete Proc-
essor Allocation Strategy for Hypercube Computers,” IEEE Trans.
Computers, vol. 41, no. 4, pp. 467479, Apr. 1992.
W.J. Dally, ”Virtual Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194-205, Mar. 1992.
S. Dutt and J.P. Hayes, ”Subcube Allocation in Hypercube Comput-
ers,” IEEE Trans. Computers, vol. 40, no. 3, pp. 341-:352, Mar. 1991.
P. Gaughan and S. Yalamanchili, ”Adaptive Routing for Hyper-
cube Interconnection Networks,” Computer, pp. 12-23, May 1993.
1. Kim. C.R. Das, and W. Lin, “A Processor Allocation Scheme for ~~

Hypercube Computers,” Proc. 1989 Int’l Conf. Parallel Processing,

D.W. Krumme, K.N. Venkataraman, and G. Cybenko,
”Hypercube Embedding is NP-Complete,” Proc. Hypercube Multi-
processors 1986, PA: S I A M 1986, pp. 148-157,1986,
Q.K.B. Lalgudi, I.F. Akyildiz, and S. Yalamancluli, ”Augmented
Binary Hypercube: A New Architecture for Processor Management
in Binary Hypercubes,” TR-GIT/CSRL-93/03, pp. 27-34, Mar. 1993.

[lo] D.D. Sharma and D.K. Pradhan, ”Fast and Efficient Strategies for
Cubic and Noncubic Allocation in Hypercube Multiprocessors,”
Proc. Int’l Conf. Puvallel Processing, pp. 118-127,1993.

[111 Q. Yang and H. Wang, ”New Graph Approach to Minimizing
Processor Fragmentation in Hypercube Multipirocessors,” IEEE
Trans. Parallel and Distributed Systems, vol. 4, no. 10, pp. 1,165-
1,171, Oct. 1993.

V O ~ . 2, pp. 231-238, Aug. 1989.

