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Abstract-Augmented Binary Hypercube (AH) architecture consists of 
the binary hypercube processor nodes (PNs) and a hierarchy of 
management nodes (MNs). Several distributed algorithms maintain 
subcube information at the MNs to realize fault tolerant, fragmentation 
free processor allocation and load balancing. For efficient 
implementation of AH, we map MNs onto PNs, define and prove 
infeasibility of ideal mappings. We propose easily implementable non- 
optimal mappings, having negligible overheads on performance. 
Extensive simulation studies and performance analysis conclude that 
these algorithms realize significantly better average job completion 
time and higher processor utilization, as compared to the best 
sequential allocation schemes and parallel implementation of Free List 
[7]. AH algorithms can be tuned or adapt to the job and system 
characteristics, and resource management traffic. 

Index Terms-Augmented binary hypercube, update algorithms, ideal 
mapping, resource management traffic. 

+ 
1 INTRODUCTION 
THIS paper focuses on two resource management problems for the 
binary hypercube- 

1) processor allocation (PA), and 
2)  load balancing (LB). 

The processors are resources to be allocated to the set of tasks in a 
job. A subcube is allocated, instead of arbitrary processors, to effi- 
ciently manage resources and minimize communication over- 
heads. However, this causes fragmentation and yields lower aver- 
age processor utilization. Static or dynamic load balancing can 
increase processor utilization by reducing fragmentation. The to- 
pology makes it nontrivial to detect the availability of a subcube. 
Determining the maximum size available subcube is NP-complete 
[8 ] .  Many of the first approaches utilized off-line serial computa- 
tions for processor allocation/deallocation [2], [7], [3]. For scalable 
and reliable solutions to PA and LB, the algorithms must be paral- 
lel and on-line. Parallel implementations of of the above serial 
algorithms have been proposed in [21, [31, [71, but require dedi- 
cated processors. 

Our approach is to logically augment the binary hypercube 
with Management Nodes (MNs). Each MN contains the corre- 
sponding subcube status information. Links are introduced be- 
tween MNs and processor nodes (PNs) forming a ternary hyper- 
cube topology. A class of fault tolerant algorithms search and up- 
date the M N  status information. These algorithms realize distrib- 
uted, fragmentation-free, fault tolerant, processor allocation and 
load balancing. From a practical standpoint, the topology is real- 
ized by mapping MNs onto PNs. 

We propose and evaluate several mapping functions in terms 
of search, update, completion times, and utilization. 
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2 THE AUGMENTED BINARY HYPERCUBE 
2.1 Definitions of Augmented Hypercubes 
The generalized r-ary hypercube consists of r" number 'of nodes, 
where each node ui has an m-digit r-ary representation im-, ... io, 
where i, E (0, 1 ..., r - 11 for 0 5 p I m - 1. A communication link 
exists between two nodes vi and uj if and only if the m digit repre- 
sentation of vi and vj differ only in one digit position. The resulting 
network is a regular graph with degree (r  - l )m,  node connectivity 
( r  - 1)m and diameter m. The binary hypercube is a special case 
when r = 2. 

DEFINITION 1 (AH). Augmented Binary Hypercube consists of PNs 
and MNs. A node vi has an m digit terna y representation im+ .. . io, 
where i, E {0,1, '1 for 0 2 p 2 m - 1. 

DEFINITION 2 (PN). A Processor Node ui, represented by im-l ... io, is 
an A H  node, with the constraint i,, E {0,11 for 01 5 p i m - 1. PN 
corresponds to a bina y hypercube node. 

DEFINITION 3 (MN). A Management Node uI, of AH, is the center of 
the k dimensional subcube, S,;, of a binary hypercube. In the m 

digit representation of u;, (ip E (0, 1, 'I, 0 I p 5: m - l), k of the 
digits i,, , . .. , iim E {*I  and the remaining (m - k )  digits E (0, 11. 

Subcube S,; is spanned by the dimensions jl, . . ., j m ,  

DEFINITION 4 (d) .  d(i7,) = ~ ~ ~ o l g k ,  where gk = 1 i f f  i k  E {*I, and = 0 
otherwise. 

DEF-I"ON 5 (center). The vertex vj is called the center of fhe subcube, 
S, of dimension d(vj), along the dimensions k such that j k  E {*I. 

All links in the binary hypercube are included in AH. Links be- 
tween the MNs and between MNs and PNs can be added in either 
of the following two ways. 

CASE (a) AH1. Two nodes u, and and u], with representation i,-, ... 
io and jrl ... io, have a link if 3k, i, = * and j k  E (0, 1)  and for 
all1,O SI  < { m -  1) and I #  k, i, = ji- 

CASE b) AH2. Two nodes u, and z; have a link if the m digit repre- 
sentation of ui and uj differ only in one position. 

In Case(a), u, is connected to uj, if and only if, S, E Sui and d(vJ 

= d(uj) + 1. In Case@), vi is connected to uj, if their m-digit ternary 
representations differ in one position. 

The properties of AH1 and AH2 is stated in 191, and is summa- 
rized as follows. Both AH1 and AH2 have 3m nodes, 2m PNs and 
(3" - 2") MNs. AH1 has m(3m-* + 2"-') links, degree of 2m for PN 
and (m + k )  for a MN at the center of a k dimensional subcube, and 
diameter of 3m/2 .  The properties of AH2 follow from the ternary 
hypercube of the same dimension, namely m3* links, degree m and 
diameter m. For PA, the communication cost in AH]: is not affected 
due to increased diameter. AH1 has k independent paths of length 
k, and (m - k )  paths of length ( k  + 31, between a M,N vi and PN uj, 

where d(vJ = k and vi E S . AH2 has m node disjoint paths be- 
tween any two nodes. Only k paths are used for information up- 
date. Additional AH2 links allow fault tolerant routing. 

By definition, there is an M N  ui for every possible subcube Svi . 

The status of Sui and its constituent PNs is maintained at M N  q, 
and is obtained by exchanging information with other MNs con- 

"i 
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Fig. 1. Comparison of various strategies. 

tained in Sui it. Any M N  can be viewed as the root of a hierarchy 
of MNs with PNs at the leaves. The ratio of PNs to the total nodes 
(NN), (2/3Im, shows that with increasing m, the number of MNs,  
links and the degree of each node increases rapidly. Secondly, the 
same distributed algorithms should be implementable on existing 
hypercubes. Hence we do not realize M N s  as distinct physical 
nodes, but map the MNs onto PNs. 

2.2 Mapping of AH Nodes onto Binary Hypercube Nodes 
DEFINITION 6 (r). The function r : Rl H R2 (where R, = {O, ..., 3m} 

and R, = (0, ..., 2m)) maps the nodes of the AH1 or AH2 to the 
PNs of AH1 or AH2. 

This mapping implies decreased parallelism in update algo- 
rithms (Section 3) and increased overheads on the PNs due to M N  
functions. An ideal mapping function, reducing these overheads, is 
defined as follows: 

DEFINITION 7 (ri). Ideal mapping function r, is such that, if Ti(vl) = m,, 

1) Parallelism Constraint:Ifd(v,) = d(v,), then m, # m2. 
2)  Dilation Constraint: If d(v,) = d(vJ + 1 and there exists a 

link between v, and v2, then there is a link between m, and m2. 
The parallelism constraint ensures that there is no loss of par- 

allelism by mapping M N s  of same level on different PNs, although 
there is a loss of bandwidth. The dilation constraint ensures that 
adjacency of nodes in AH is preserved and hence, messages trav- 
erse the same number of physical links in AH and mapped AH. 

THEOREM 1. An ideal mappingfunction, Ti, does not exist. 

PROOF. Refer to [91. 0 

Hence, we propose nonideal mapping schemes, preserving di- 
lation, not parallelism constraint. This results in decreased paral- 
lelism but preserves message delays. The mapping and inverse 
mapping is implemented with a mask table for each PN, with 
fields as shown in Fig. 2c. On receiving a message, the PN searches 
the mask table for the M N ,  to which the message is addressed. It 
completes the requisite action and updates the M N  entry. 

Let T(vJ = MI,  where the m digit representation of vi is im-, ... io, 
and that of M j  is jmT1 ... io, and i, E (0, 1, *) and j ,  E (0, 1) (k = 0, 
m - 1). The mapping strategies are: 

rib2) = m2, 

1) MaskMapping: If ik E (0,1), then j k  = 0, and if ik = *, thenj, = 1. 
2) Star Mask Mapping: If ik E {0,1], then j k  = i,, and if i, = *, then 

3) Run Mask Mapping: Let the dimension of vi = d(v,). 
j k  = 1. 

If (Vl (1 < k), ir E (0, l)), if (i, E {O, l)), then j k  = i,, and if (ik = *), then j ,  = 1. 

Else if (Vl ( I  2 k) ) ,  if E (0, 11, then if (i, E (0, l}), then], = i,, and if 
(ik = *), then j k  = 1. 

Else if (39, Vl  ( I  5 9). if E {O, 1)) and if(k > (9 + d(vJ)), then j ,  = 1, else 
jk = 0. 

In Musk Mapping, the M N s  at the same level map to different PNs. 
However, a large number of small k dimensional nodes (2m"), map 
to the same node. In Star Mask Mapping, these (2m-k) nodes map 
separately onto different nodes, lowering mapping overheads. 
However, two MNs,  of same dimension, having * and 1 in the 
same position map to the same PN, reducing parallelism. In Run 
Mask Mapping, all digits, between the first and last digit having * 
(run of digits), are masked to 1. The other digits retain the same 
values. This strategy violates the dilation constraint but it reduces 
the overheads on parallelism. The mapping distribution can be 
found in [9]. 

3 lNFORMATlON UPDATING IN THE AUGMENTED 
ARCHITECTURE 

We propose efficient distributed algorithms for maintaining subcube 
information in AH for PA and LB. M N  D, maintains S,, specific infor- 

mation. For PA, it is the number of available PNs in Sot , avail(v,). For 

LB, it is the load on Sui , load(v,). For PN v,, avail(v,) 5 1 if v, is available, 

0 otherwise. For MN v,, avaiZ(v,) = E,=, avail(v,), where v, is a PN, 
2m 

D, E S , and avail(vJ = 1. For MN v,, load(vl) = ~ ~ ~ , l o a d ( o , ) ,  where 
V I  

D, is a PN, D, E S, . The following phases search and update this 

information: 

Phase 1 (Search Phase): PA searches for the optimal subcube (first 
or best fit) with available nodes for allocation. LB searches for 
the most heavily and lightly loaded subcubes. 

Phase 2 (Updating Stage 1): On allocation of tasks, PA updates 
subcube information. LB updates load information on the PNs 
and M N s  on allocation or relocation of tasks. 

Phase 3 (Updating Stage 2): Subcube information must be up- 
dated in M N s  for deallocated processors or those freed by task 
relocation. 
Fig. 2a shows the Phase 1 template and Fig. 2b that of Phases 

2/3. The search phase begins at H,,, MN at the center of the hyper- 
cube. H, sends a search message with m and k (k < 2"). The update 
phase begins at the allocated/deallocated PN. For consistency, 
either a search phase or multiple update phases can be in progress 
at any time. We propose algorithms which optimize costs, in terms 
of the number of messages sent. 

1 
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If (recvdMsg == {'search', q, vp, m, k ) )  { 
/" up = parent node(sender), m = reqd. subcube size, 
k = appln. specific parameter "/ 
If (d(v,) == m) /" C1*/ 

Else If (d(v,) > m) 
(set replyMsg based on info. at v,, kl /* S1 "/ 

{Either set replyMsg based on info. at v,) 
{Or VuI s.t. d(v,) = d(v,) - 1 and SD c S, 

sendMsg(vJ, {'search', vI, vv m, k] ) ;  
recvReply(reply); 
{set replyMsg based on reply) /* 53 "/ 

/" 52 */ 

I '  

I 

{Either Do nothing (algorithm specific choice)) 
[Or Vvl s.t. d(vI) = d(v,) - 1 and S, c S,, 

sendMsg(v,, ('search', vl, D,, m, kl); 
recvReply (reply); 
{set replyMsg based on reply] /*  S4 */ 

Else /" d(vJ < m "! 

J 

1 
sendReply(vp, replyMsg); 

I 
(a) Search phase at node v, 

Foreach allocated processor u,, 
SendAllocatedMsg(v,, {'update', vj, vi]); 
/" where d(vj) = 1, and v, E S,. "/ 

If ' (recvdMsg == {'update', vj, v,]) { 
(Update info. at vl) /*  55 */ 
AC,, = (AC,  + l)mod(d(vj)); 

If ( A C ,  == O ) {  

I 

Foreach MN vi 

I 

[Update vl info. at vj)  /* S6 */ 
VU, s.t. d(v,) = d(v,) + 1 & S, c SVc 

SendAllocatedMsg(v, ('update', vc, vi]); 
I / "  End of If (Allocation Countev is 0)  */ 

I 

) /*  End of Updating Algo for MN vI */ 

(b) Update phase for immediate update 

(c) Mask table on each PN 

Fig. 2. Search and update phases and mask table. 

3.1 Algorithm 1 : Immediate Update 

MN vi maintains consistent S,, information and is immediately 
informed of any state change of a PN E S . This strategy is useful 
when search costs dominate update costs. 

DEFINITION 8 (CN). Nodes v, and vL1 are Complementary Nodes 

vi 

(CN), if 
d(vJ = d(vi,) = d ( v j )  - 1, SOj c S,, , Sui, c Sui and SVi nS,ll = C .  

Phase 1: For PA, in Fig. 2, k is the number of processors to be allo- 
cated. When avail(vi) < k,  the processors are allocated in two 
disjoint smaller subcubes. S1 and S2 check if avail(v,) 2 k. If so, 
replyMsg indicates success if vi can be allocated, failure other- 

wise. Allocation begins at zli, such that, avail(v,) 2 k, VuI, d(v,) = 

d(q) - 1 and S, c S.. , amil(z$ < k. M N  vi sends allocate mes- 

sages to two CNs v, and vi,, where S, ,S c: S D 1 ,  and d(vJ = 

d(v,,) = d ( q )  - 1. 52 also sends allocate messages to the CNs. S4 
selects ztI and ~ 7 , ~  and receives the reply. Allocate messages ter- 
minate at PNs. Multiple messages cannot reach the PNs, as the 
strategy recursively allocates PNs in disjoint subcubes. 

For LB, k indicates if the search is for a maximal or minimal 
loaded subcube. S1 sets replyMsg to load(v,). Based on k,  53 checks 
if the load in yeply is greater than the maximal load or is less than 
the minimal load of the previously checked m-dimensional sub- 
cubes, and accordingly sets replyMsg. 

Phases 2 and 3: The updating propagates from PA7 to H,. MN vl has 
d(vJ node disjoint paths of length d(v,), to I" vi, which is allo- 
cated/deaUocated. MN vi has a moddo-d(vj) counter to count re- 
ceived update messages, and allocation/deahlocation at vj is 
complete on the receipt of d(vj) messages. The counter ensures the 
correctness of the distributed algorithm, even when multiple 
nodes in Spl are allocated simultaneously, AC, is the Allocation 

Counter of node zi In Fig. 2b, for PA, S6 decreases avail(vi) in 
Phase 2 and increases avail(vi) in Phase 3. For LB, the message 
contains lond(v,), which is incremented with each allocation. 55 
increments load(vJ in Phase 2, and decrements loa!d(v,) in Phase 3. 

I ' i  

1 

I 

3.2 Algorithm 2 (Lazy Update) 

M N  v, does not have consistent S, information. In the search 
phase, it is collected on demand hom the PNs. When update re- 
quests are high, the updating messages are not sent, reducing the 
updating costs at the expense of higher search costs. 

Phase E (Search): The algorithm is the same as the Phase 1 of Sec- 
tion 3.1, except that the C1 in Fig. 2 is replaced by the following 
condition: {If (visifed(vi))/" C2 * / I .  
For PA and LB, S1 in Fig. 2a is as follows: If (d(v,) = m) {If 

(avail(v,) 2 k), replyMsg indicates success with node value as v,]. 
Else If Mu,) < m) replyMsg contains avail(v,). Else If (d(v,) > m) 
{since u, is already visited, replyMsg has previous search result. 
avail(v,) is set to replyMsg). 

53 is as follows: If (d(vi) 2 m) {Let vi, and vl be CNs. If S, in- 
I' 

formation is available in replyMsg, then visited(v,) is set and avail(vi) 
= avail(vl) + az.ail(vj,) or lond(v,) = Zoad(vj) + load(vjl)}, else replyMsg is 
set to avail(vj) or load(v,), and search message sent to vi,. If (d(v,) = m 
and auail(vj) t k )  replyMsg indicates success at vi else failuve). 

If @(vi) < m) {replyMsg contains load(vj) or av,ail(v,).} For PA, 
search terminates after vj and z;, information is obtained. For LB, 
depending on k,  the search continues for all smalller dimensional 
subcubes to find minimally or maximally loaded subcubes 

Phases 2 and 3: No information updating is done. 

I 

3.3 Algorithm 3 (Intermediate Update) 
DEFINITION 9 (u). Update height (u)  is the size of the subcube, such that 

an MN vi keeps consistent information, by constant updating 
during allocation/deaZlocation, iffd(v,) I u. 

A node uz executes Immediate Update if d(vJ < 11 and Lazy Up- 
date if &vi) > u. By choosing u, it allows trade-offs between the 
search and update costs. 
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3.4 Algorithm 4 (Adaptive Update) 
DEFINITION 10 (wavefront). The wavefront consists of nodes main- 

taining consistent information, where update and search mes- 
sages, for collecting consistent information, terminate. 

A node v, executes either the Immediate or the Lazy Update, 
depending on the fraction of the search to the total number of 
messages, a 7 ,  maintained locally. Let a!,m and a:gh, be the cut- 

off limits for v, (0 < a? < cczgh). When a$rr < slow, ZI, extends the 
wavefront to the centers of the smaller dimensional subcubes, by 
sending messages to them to use Lazy Update, thus saving on up- 
date costs. When a 7  > ahlgh, v! contracts the wavefront to the 

centers of the larger subcubes, by changing to Immediate Update, 
thus saving search costs. This strategy can adapt to unknown job 
characteristics. 

The PA schemes in [21, [7], [31 involve identification of an m 
dimensional subcube such that 2"-' I k < 2", causing fragmenta- 
tion. Our distributed allocation strategies are fragmentation free, 
(similar to [l]), as avaiZ(v,) allows 

81 

V I  

1) allocation in partially allocated subcubes of D,, and 
2) partitioning of tasks to vl, when avazl(vJ t k, avail(v,) < k, 

S, E S, andd(v>>m. 
1 1  

4 
Since static and dynamic LB use PA, we study only PA. We com- 
pare Buddy, Modified Buddy, Maximal Set of Subcubes (MSS)  151, 
Prime Cube (PC Graph) [ll], Gray Code scheme (GC) [21, Tree 
Collapsing scheme (TC) [31, Free-List scheme (FL)  171 with AH in 
terms of time required for allocation, deallocation, space complex- 
ity and number of subcubes recognized (note k < 2m, the size of the 
subcube required). The cost in AH is the time spent in sending or 
receiving messages. Unlike centralized algorithms, the perform- 
ance of AH is dependent on the message delay, which depends on 
request rates, cube sizes, traffic patterns, queuing at intermediate 
nodes, buffer sizes, routing algorithms etc. GC, TC, and FL are 
centralized whereas AH algorithms are distributed. Only AH takes 
into account the job and system characteristics, e.g., 1, q, u, p. 

4.1 Complexity Analysis 
Lazy Update and Immediate Update are special cases of Intermediate 
Update algorithm, when u = 0 and m, respectively. Adaptive Update 
costs are bounded by the updating costs of Immediate Update and the 
search costs of Lazy Update. Hence, we only analyze the worst case 
costs (WC) for the Intermediate Update as follows: during Phase 1, 
messages can only reach level u. Any node v, has to send to z;, at 
most d(vJ messages (where S, E S U 1 ,  d(v,) = d(vJ - l), leading to the 

recurrence equation: WC(v,) = d(vJ x WC(v,), if d(vJ > u and WC(v,) = 

Constavtt if d(v,) = u. Hence the search time complexity is O(n!/u!).  

DEFINITION 11 (p).  "Max. Message Time" or p is the maximum time to 

WC for Phases 2 and 3, for k nodes, is when the update messages 
for two nodes do not overlap. For messages to reach vf, where d(vJ = 
u, WC(vJ = O(k.u.p). However, due to concurrent updating, the av- 
erage delays are far lower than the worst case costs. 

4.2 Simulations 
We allocate 1,000 jobs on a 32 node hypercube. We assume the job 
arrival rate and service times to be Poisson and exponentially dis- 
tributed, reflecting the memoryless property of the jobs, and sub- 

PERFORMANCE ANALYSIS OF THE ALGORITHMS 

1 

send a message between two neighboring nodes. 

cube sizes to be uniformly distributed, with the service time of 
each PN, in the allocated subcube, same as the job service time. 
The jobs arrive at H, and are queued up if they cannot be allocated 
PNs immediately. In Immediate Update search is conducted only 
when avail(H,) t k.  For other algorithms, on failure, search is re- 
peated after some time. The performance measures are: t,, the av- 
erage completion time, ts, the search time, tu, the update time, pu, 
the utilization of PNs, and queuing times (all plotted with 90% 
confidence intervals averaged over 20 runs, in terms of p, except 
utilization). Let R be the average interarrival time, q, the average 
completion time, and s,, the mean subcube size of jobs. 

Fig. 3a shows t,, tu, t, as a function of u, in Intermediate Update. 
The end points correspond to the Lazy and Immediate Update. The 
assumptions are: R = lop, q = loop, and s, = 8 (three-dimensional). 
The startup transients are negligible with these parameters. When 
u increases, tu increases but t, decreases. Consequently, the t, and 
queuing times shows a minimum between 0 and 5.  As the updat- 
ing costs dominate the search costs, pu decreases with increase in u 
191. The search and update overheads are very low for R, 77 - p. 

500 
450 
400 
350 Update time 

Compl. time 300 
ch time (Error) 250 

200 te time (Error) 
1. time(Error) 150 

50 
100 * b e  

0 1 2 3 4 5  
u (Intermediate Algorithm) 

4 - 

0 5 10 15 2 0  2 5  30 35  
Processors per Job 

(b) 

Fig. 3. Performance of (a) completion time with u, (b) completion time 
with s,. 

Fig. 3b shows t,, tu, t, as a function of s,. Jobs with large s, have 
fine grain parallelism, and those with smaller s, have coarse grain 
parallelism. The assumptions are: Total service time of a job is 
constant, i.e., 77f - 1 / s,, where qf is the mean service time of a 
task, R = lop, q = 1OOp (for a job requiring all 32 nodes). Note that 
we omit confidence intervals to aid clarity in these graphs, and 
they are similar to Fig. 3a. 

For Lazy Update, tu = 0. With increase in so t, (and hence t,) de- 
creases (due to longer w and queued jobs), reaches a minimum, 
and then increases (due to inadequate available processors). For 
Immediate Update, tu increases, and t ,  increases and then decreases, 
with s,. Hence t, increases and then decreases. Here tu increases 
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due to larger A4Ns to be updated. WC is higher than simulation 
values, for t, as compared to t, (Fig. 5b). For Immediate Update, pu 
decreases rapidly with s,  as compared to Lazy Update, as more 
update messages block allocation of queued jobs (Fig. 4a). Hence 
Lazy Update is better for jobs with larger s,, and Immediate Update 
for jobs with smaller s,. 

1 U ’  I I I .  I 

WJil. (Parallel FL) =~ 

0 . 4  

0 . 2  

0 

- 

- 

0 5 10 15 20 25 30 35 
Processors per Job 

Comp. time (no mapping) 
100 Comp. time (star mask) +-- 

Comp.time(Mask) - Comp.time(run mask) e I Util(star mask) 
10 

0 5 10 15 20 25 30 35 
Processors per Job 

Fig. 4. Performance of (a) utilization with s,, (b) completion time/utilization. 

Adaptive Update adapts to U when U is difficult to estimate and 
may vary with time. tu is lower when a:: is close to a?, as a 7  
adapts faster to U 191. However, a tightly constrained a has insta- 
bility problems. 

4.3 Performance of Update Algorithms under Various 

For large I I  and D (over 100,000 ,U and l,000@, mapping overheads 
are negligible. Fig. 5a shows t, with s, for a sequential job (7 = 
4,000,~, I I  = 1,000,~). Star mask and run mask have similar over- 
heads. Mask mapping shows the best to, for small sc. Mask map- 
ping scheme and jobs with small s, are suitable for mapped im- 
plementation. 

Update algorithms also perform better than sequential algo- 
rithms [9]. 

Mapping Strategies 

5 CONCLUSION 
We have proposed an augmented architecture and algorithms, for 
efficient processor allocation and load balancing in binary hyper- 
cubes. The cost, performance and sensitivity of the algorithms 
indicate the following: Intermediate Update algorithm performs 
better than Lazy and Immediate Update algorithms, with Lazy Update 
suitable for fine grain parallelism and Immediate Update for coarse 
grain parallelism. Adaptive Update is useful when the job charac- 
teristics are not known or change with time. 

0.001 
0 5 10 15 20 25 30 35 

Processors per Jolb 

orst Case Search 

Worst Case 

0 1 2 3 4 5  
u (Intermediate A l g o l - i t h )  

Fig. 5. (a) Searchhpdate time, (b) simulation vs. worst case. 
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