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Abstract

A mobile user location management mechanism is intro-

duced that incorporates a distance based location update

scheme and a paging mechanism that satisfies predefine de-

lay requirements. An analytical model is developed which

captures the mobility and call arrival pattern of a terminal.

Given the respective costs for location update and terminal

paging, the average total location update and terminal pag-

ing cost is determined. An iterative algorithm is then used

to determine the optimal location update threshold distance

that results in the minimum cost. Analytical results are also

obtained to demonstrate the relative cost incurred by the

proposed mechanism under various delay requirements.

1 Introduction

Personal communication networks ( PCNS) consist of

a fixed wireline network and a large number of mobile

terminals. These terminals include telephones, portable

computers, and other devices that exchange information

with remote terminals through the fixed network. The

wireline network can be the telephone network in use

today or the ATM network in the future. III this paper,

we do not make a specific assumption on the wireline

network. However, it must have sufficient capacity to

carry the traffic generated by the terminals in an efficient

manner.

In order to effectively utilize the very limited wireless

bandwidth to support an increasing number of mobile

subscribers, current PCNS are designed based on a cel-
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lular architecture. The PCN coverage area is divided

into a large number of smaller areas called cells. Ter-

minals within a cell communicate with the wireline uet-

work through a base station which is installed inside the

cell. This base station serves as the network access point

(NAP) for all the terminals within the cell. As soon as a

terminal enters another cell, its NAP is switched to the

base station of the newly entered cell. As terminals are

free to travel from cell to cell, a mechanism is needed

to effectively keep track of the location of each termi-

nal. When an incoming call arrives, the wireline network

must be able to determine the exact location of the des-

tination terminal in a timely fashion without incurring

excessive computation and comrnuuication costs.

Current cellular networks partition their coverage

area into a number of locatton areas ( LAs). Each LA

consists of a group of cells and each terminal reports its

location to the network whenever it enters an LA This

reporting process is called locatzon update. When an

incoming call arrives, the network locates the terminal

by simultaneously polling all cells within the LA. This

polling process is called termtnal pagzng Both the loca-

tion update and the terminal paging processes require a

certain amount of wireless bandwidth. In addition, sig-

nificant power is consumed by the terminal to keep track

of its location and to transmit update messages As a

result, costs are associated with both the location up-

date and the terminal paging processes. It is clear that

if each LA consists of only one cell, the network knows

exactly the location of each terminal, In this case, the

cost for terminal paging is minimal. However, the cost

for location update will be very high as the terrnmal has

to report its location whenever it enters a cell. A trade-

off. therefore, exists between the location update cost

and the terminal paging cost. It is desirable

a location update and terminal paging policy

minimize the total cost.

to select
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A method for calculating the optimal LA size given

the respective costs for location update and terminal

paging is introduced in [8]. However, under the LA

based scheme, terminals located close to an LA bound-

ary may perform excessive location updates as they

move back and forth between two LAs. Besidesl the

optimal LA size should be terminal dependent as mo-

bility and calling patterns vary among users. It is not

generally easy to use different LA sizes for different ter-

minals.

Three location update schemes are examined in [3]:

time based, movement based and dzstance based. Un-

der these three schemes, location updates are performed

based on the time elapsed, the number of movements

performed, and the distance traveled, respectively, since

the last location update. Results demonstrated that the

distance based scheme produces the best result. How-

ever, the model considered in [3] is very simplified. For

example, in [3] incoming calls are not taken into account,

Moreover, paging delay is not constrained. A distance

based location update scheme is introduced in [6] where

an iterative algorithm that can generate the optimal

threshold dist ante resulting in the minimum cost. How-

ever, the number of iterations required for the algorithm

to converge varies widely depending on the mobility and

call arrival probability parameters considered. Besides,

as in [3], paging delay is not constrained. The time

required to locate a mobile terminal is directly propor-

tional to the distance traveled by the mobile terminal

since its last location update. A dynamic location up-

date mechanism is introduced in [1] where the location

update time based on data obtained on-line is dynam-

ically determined. It is demonstrated that the result

obtained is close to the optimal result given in [6]. Com-

putation required by this mechanism is minimal. It is,

therefore, feasible to implement this scheme in mobile

terminals that have limited computing power. Similar

to other schemes described above, the drawback of this

scheme is that paging delay is not explicitly considered.

In [7], paging subject to delay constraints is consid-

ered. Results demonstrate that when delay is uncon-

strained, the highest-probability-first scheme incurs the

minimum cost. For the constrained delay case, the au-

thors determine the optimal polling sequence that re-

sults in minimum cost. The authors, however, assume

that the probability distribution of user location is pro-

vided. This probability distribution may be user depen-

dent. A location update and terminal paging scheme

that facilitates derivation of this probability distribution

is needed in order to apply the paging scheme gi>-en in

[7]. Besides, the trade off between location update and

terminal paging is not considered in [7],

In this paper, we introduce a location management

scheme that combines a distance based location update

mechanism with a paging scheme which guarantees a

pre-defined maximum delay requirement. We propose a

Markovian model which captures the mobility and call

arrival patterns of a particular terminal. Based on this

model, we obtain the average location update and ter-

minal paging costs. We use an iterative algorithm to de-

termine the optimal location update threshold clistance

that will result in the minimum average total cost. We

provide numerical results that, demonstrate the trade off

between high and low delay bounds under various pa-

rameter values.

This paper is organized as follows. In Section 2, we

describe the mobility model ancl the location update ancl

paging schemes. Sections 3 and 4 describe a Markov

chain model for the one- and two-dimensional PCN cov-

erage area, respectively. Solutions for the steady state

probabilities of the hlarkov chain are also presented.

Section 5 describes a method for deriving the total lo-

cation update and paging cost. A method for obtaining

the optimal location update threshold distance is given

in Section 6. Section 7 presents the numerical results.

the conclusion is given in Section 8.

2 System Description

2.1 Terminal Mobility

In this paper, we consider both one- and two-

dimensional mobility models. The one-dimensional

model is suitable for situations where the mobility of

mobile terminals is restricted to two directions (forward

and backward). Examples include roads, tunnels, train

and train stations. The two-dimensional mode] is suit-

able for more general case where terminals can travel in

any direction within a coverage area (such as a city), We

assume that the PCN coverage area is divided into cells

according to:

One-Dimensional Model: The one-dimensional space

is divided into cells of the same length. Each cell has two

neighbors. Figure l(a) shows the cell partition in a one-

dimensional coverage area The numbers represent the

distance of each cell from cell (-l and are discussed later

in this section.

Two- Dinlensional Model: The two dimensional

space is divided into hexagonal cells of the same size.

Each cell has six neighbors. Figure 1(b) shows the cell

partition in the two-dimensional coverage area.

The size of each cell is determined based on the number

of mobile subscribers, the number of channek available

per cell and the channel allocation scheme used. In this

paper we concentrate on finding the optimal location

update distance assuming that the size of cells is given,

Our scheme works both in the macrocell and the ml-
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Figure 1: (a) One-Dimensional Model and (b) Two-

Dirnensional Model.

crocell environment. We note that if the size of cells is

small, the probability of movement (to be discussed later

in this section) will be high and vice versa. We consider

a wide range of values for the probability of movement

in the numerical examples given in Section 7.

Here we introduce the concept of a rzng. As it is

shown in Figure l(b), each cell is surrounded by rings

of cells. If we select cell O (as indicated) as the center,

cells labeled ‘ 1‘ form the first ring around cell O. Cells

labeled ‘2’ form the second ring around cell O, and so on.

Each ring is labeled according to its distance from the

center such that ring rl refers to the first ring away from

cell O. In general, if we consider cell O as a ring itself,

then ring r, (i = 0, 1, 2... ) refers to the ith ring away

from the center. We assume that the distance of each

cell from the center cell is measured in terms of num-

ber of rings such that cells in ring r, are i rings away

from the center. The distance (in terms of the number

of rings) of each cell from cell (1 is given in Figure l(b).

For the one-dimensional model, even though cells do not

form physical rings, we will use the same terminology as

in the two-dimensional case. As shown in Figure 1(a),

cells labeled i belong to ring r~. The distances (in term of

the number of rings) of each cell from cell O is indicated

in Figure 1(a). Unless specified otherwise, all dist antes

mentioned in this paper are measured in terms of rings.

We will not explicitly indicate the unit of distance here-

after.

We define g(d) to be the number of cells that are

within a distance of d from any given cell (including this

cell) in the coverage area:

{

for l-dim. model, d = O, 1,2...

‘(d) = ~~(~~ 1) + 1 for 2-dim. model, d = 0, 1,2...

(1)

Mobile users travel from cell to cell within the PCN

coverage area. In this paper, we assume the mobility

of each terminal to follow a discrete-time random walk

model as described below:

At discrete times t, a user moves to one of the neighb-

oring cells with probability g or stay at the current,

cell with probability 1 – y.

If the user decides to move to another cell, there is

equal probability for any one of the ne@bormg cells

to be selected as the destination. This probability

is ~ in the one-dimensional model and ~ in the two-

dimensional model.

As compared to the fluid flow model reported in [8], the

random walk model is more appropriate as most of the

mobile subscribers in a PCN are likely to be pedestri-

ans. The fluid flow model is more suitable for vehicle

traffic such that a continuous movement with infrequent

speed and direction changes are expected. For pedes-

trian movements such that mobility is generally confined

to a limited geographical area while frequent stop-and-

go as well as direction changes are common, the random

walk model is more appropriate. Similar random walk

models are also reported in [1, 3. 6]. Incoming calls may

arrive during each discrete time t. We assume that the

incoming call arrivals for each mobile terminal are geo-

metrically distributed and that the probability of a call

arrival during each discrete time t is c. We also assume

that the location identifier of a cell is broadcast by the

base station periodically so that every mobile terminal

knows exactly lts own location at any ,g]~en time Each

mobile terminal reports its location to the network ac-

cording to the location update scheme to be described

in Section 2.2. The network stores each mobile ternli-

nal’s location in a database whenever such information

is available.

2.2 Location Update and Terminal Paging

Mechanism

We define the center cell (cell O) of a mobile terminal

to be the cell at which the terminal last reported its lo-

cation to the network. A distance based location update

mechanism is used such that a terminal will report its

location when its distance from the center cell exceeds

a threshold d. This location update scheme guarantees

that the terminal is located in an area that is within a

dist ante d from the center cell, This area is called the

reszdtng area of the terminal.

In order to determme if a terminal is located in a

particular celll the network performs the following steps:

1. Sends a polling signal to the target cell and waits

until a timeout occurs.
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2. If a reply is received before timeout, the destination

terminal is located in the target cell.

3. If no reply is received, the destination terminal is

not in the target cell.

We call the above process the polhng cycie. For simplic-

ity, we define a maximum paging clelay of m to mean

that the network must be able to locate the destination

terminal within m polling cycles. When an incoming call

arrives, the network first partitions the residing area of

the terminal into a number of subareas (a method for

partitioning the residing area into subareas will be de-

scribed next ) and polls each subarea one after another

until the terminal is found.

We denote subarea j by .4j where the subscript in-

dicates the order in which the subarea will be polled.

Each subarea contains one or more rings and each ring

cannot be included in more than one subarea. As dis-

cussed in Section 2.1, ring r, (r’ = 0, 1, 2... ) consists of

all cells that are a distance of i away from the center

cell. For a threshold distance of d, the number of rings

in the residing area is (d + 1). If paging delay is not

constrained, we assign exactly one ring to each subarea.

The residing area is, therefore, partitioned into (d+ 1)

subareas. However, if paging delay is constrained to a

maximum of m polling cycles, the number of subareas

cannot exceed m. Otherwise, we may not be able to

locate the terminal in less than or equal to m polling

cycles. Given a threshold distance of d and a maximum

paging delay of m, the number of subareas, denoted by

1, is:

.l=min(d+l, m) (2)

We partition the residing area according to the following

steps:

1. Determine the number of rings in each subarea by

q=l~j.

2. Assign ~ rings to each subarea (except the last sub-

area) such that subarea .47 ( 1 < j < f – 1) is as-

signed rings r~~j _ 1) to rn~ – 1.

3. Assign the rernaming rings to subarea .4<.

The partitioning scheme described above is based on a

shortest-distance-first, (SDF) order such that rings closer

to the center cell are polled first. It is shown in [7]

that in order to minimize paging cost, the more prob-

able locations should be polled first. lTnder the mo-

bility model described in subsection 2.1, in most cases

there is a higher probability of finding a terminal in a

cell that is closer to the center cell than in a cell that

is further away. Our partitioning scheme is, therefore,

analogous to a more-probable-first scheme. It is shown

in Section 7 that, under our partitioning scheme, signif-

icant gain can be achievecl when the mammum paging

delay is increased only slightly from its minimum value

of one polling cycle. We stress that our method of de-

termining the optimal threshold distance is not limited

to this SDF scheme. Since we can determine the prob-

ability distribution of terminal location in the residing

area, our mechanism can determine the optimal thresh-

old distance when any other partitioning schemes are

used.

In the following sections, we determine the optimal

threshold distance that results in the minimum total lo-

cation update and terminal paging cost. The following

two steps are taken in deriving this optimal threshold

distance:

e

e

3

3.1

Determine the probability distribution of terminal

location within the residing area using a Markov

chain model. This information is useful in finding

the average total cost.

Determine the average total cost as a function of

threshold distance and maximum paging delay and

locate the optimal threshold distance using an iter-

ative algorithm.

One-Dimensional Mobility Model

Markov Chain Model

We setup a discrete-time Markov chain model to cap-

ture the mobility and call arrival patterns of a terminal.

Figure 2 gives the Markov chain model when the loca-

tion update threshold distance is d. The state of the

Markov chain i (i > 0) is defined as the distance be-

tween the current location of the mobile terminal and

its center cell. This state is equivalent to the index of

the ring in which the mobile terminal is located AS a

result, the mobile terminal is in state i if it, is currently

residing in ring r,. The transition probabilities a,,, +l

and bt,, _l represent the probabilities at which the dis-

tance of the terminal from its center cell increases and

decreases, respectively. As described before, c denotes

the probability of a call arrival. Transitions from a state

to one of its two neighboring states represent movements

of the terminal away from a cell. A transition from any

state to state O represents either the arrival of a call or

the occurrence of a location update when the threshold

distance d is exceeded. When a call arrives, the network

determines the current location of the mobile terminal

by paging and, as a result, the center cell is reset to the

current cell location of the mobile terminal. Similarly,

the center cell is reset when a location update occurs.
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Figure 2: Markov chain model

In both cases, the center cell becomes the current lo-

cation of the mobile terminal and the new state of the

terminal is therefore O. The transition probabilities of

the discrete-time Markov chain are given as:

{

q ifi=()
a~,~+l =

~ ifl<i~d—
(3)

We assume pz,d (O ~ i ~ d) to be the steady state

probability of state z’ when the maximum threshold dis-

tance is cl. The balance equations for the Markov chain

are given as:

PO,d~O)l = Pl,dh, o +pd, d~d)d+l + c $ Pk,d (5)

k=l

Pd, d(ad, d+l + ~d,d–1 + c) = Pd–l,dad–l,d (6)

Pt,d(at,z+l + ~t,t-1 +C) =

lh-l, duz-l, z +~~+ldbt+l)t foro<i<d (7)

Given the balance equations (5-7) and the transition

probability equations (3) and (4), the steady state prob-

abilities of the Marlcov chain can be obtained. The

closed form expressions for the steady state probabili-

ties are given in the next subsection. The probability y

of state d is particularly important in determining the

location update cost. As will be described in Section 5,

the location update cost can be obtained given the value

of pd, d. In the following subsection, we will first solve

for the equation of pd,~. The steady state probabilities

of other states will be derived in terms of pd,d. These

closed form expressions allow us to determine the loca-

tion update and terminal paging costs in a more effective

manner.

3.2 Steady State Probabilities

Based on equation (7), we can obtain the steacly state

probabilities for state (z’ + 1) (1 s i ~ d – 1 ) in terms

of the steady state probabilities of states i and (i – 1 )

according to the following expression:

for O<i<d (8)

Substituting the transition probabilities given by equa-

tions (3) and (4) in equation (8), the following equation

for pl+l,d 1s obtained:

Pz+l, d = ffp%,d – Pt–l,d forl<i<d

where a is given as:

(9)

10)

Equation (9) can be applied recursively to obtain the

steady state probabilities for state i (where 2 s i < d)

in terms of the steady state probabilities of states 1 and

2:

Pz, d = s,-~pz,d – S,-spl,d for2<i<d (11)

where S2 is defined recursively as:

{

1 ifi=o

Si= ~ ifi=l (12)

CYsl-l—s%–?if2~i~cl

To solve for the closed form expression for St, we ap-

ply Z-transform to the last part of equatlou ( 12) MLll-

tiplying each side of equation ( 12) by s’ and summing

both sides of the equation from 2 to x, we obtain the

following:

We can now make use of the initial conditions of S, as

given in equation (12) to obtain the Z-transform of S,,

denoted by S(~), as:

Taking the inverse Z-transform of the abo~re equation,

the closed form equation for S, can be obtained as:

1+1 1+1
s,=% –e?

el —e?
(15)

where el and ez ar~ the roots of the quadratic equation
Z2 _ cr~ + 1, which is the denominator of S(z), and is

given as:

e,= ;(Q+ Y=) (16)
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Making use of equations (11) and ( 15), we can obtain

the steady state probabilities of states u! and (d – 1 ) as

follows:

d– 1 d– 1
— eq

d_’2
el

d–~
— e?

Pd,d = ‘1 - p~,d –
el — e~

Pl,d
el — ez

ford>l (18)

(ecp _ ep, (e~-3 – ej-3)
Pal-l, d = P?, d – P1. d

el — ez el —ez

ford>2 (19)

These two equations will be used, together with the

equations to be derived later, to solve for the steady

state probabilities of the Markov cilain.

Rearranging equations (5) and (7) with i = 1, results

in the following expression for pd,d in terms of pl ,d and

P?)d:

1
Pd,d = (j~z – l)pl,d – +p?,d – (a – 2)

ford>l (20)

Another expression for pd,d can be obtained by substi-

tuting the transition probabilities in equation (6) as fol-

lows:

1
pd,d = ;Pd-l, d ford>l (21)

Substitute p&l,d as given by equation (19) in equa-

tion (21) results:

for d >2 (22)

Equations (18), (20) and (22) are three different expres-

sions for pd,d as a function of pl,~ and ~z,d. Since we

have three equations and three unlinowns, the solution

for ~d,d can be obtained:

RlR3 – R;
pd,d = Ii_~

K2R1 -t- K3Rz i- K4Rs -t 2R] R3 – 2R;

for d >2 (23)

where R% and K1 to K4 are defined as:

Ri = e;-a – e:-’ (24)

A-1 = –2(CY – 2) (25)

I<? = (a3–2&)(e~–e~) (26)

1<3 = (–2CY2 +2)(e~ – e?) (27)

K4 = a(el – ez) (28)

We can further obtain the expressions for po)d, Pl,d and

Iz,d ill term of Pd,d using equations ( 18), (20), (22) and

(7). The results are given below:

R1CY2– 2RZQ + Rs
p(I,d = Rd_~Pd,d

2(R; – RIR3)
for d >2 (29)

RIiI – R2
R&~pd,d

‘~’d = R; – RIR3
ford>2 (30)

Substituting these pl,d and p~,d expressions in equa-

tioil ( 11) gives the following equation for pj,d:

Ss_z(RNY– R3) – S2_3(RlcY– R?)
Pi,d =

R; – R1R3
R&@d,d

for2<i <d, d> 2(32)

Since the transition probability U,,,+ i. has a different,

value when i = O compared to when i > 0, the steady

state probability equations (23)-(32) are valid only for

threshold dist ante larger than 2. When the threshold

distance is smaller than or equal to 2, we solve the steady

state probabilities directly from the balance equations.

The steady state probabilities for the threshold distances

of O, 1 and 2 are given below:

d=O:

po)rl = 1.0 (33)

d=l:

d=2:

q+c
Po,l = —

2q+c

9
Pl,l “ —

2q+c

2c+lJ
po,~ = —

2C + 3q

4q(c+q)
Pi, ? =

9q~ + 12qc + 4c~

2q~
pz,z =

9q~ + l’2yc + 4c~

(34]

(35)

(36)

(37)

When the threshold distance d is greater than or equal

to 3, equation (32) gives the steady state probability for

states 3 through (d – 1). Equations (29). (30), (31)

and (23) give the steady state probabilities for states

(),1,2 and d, respectively. When the threshold distance

d is smaller than 3, equations (33) to (3S) are used to

determine the steady state probabilities.
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4 Two-Dimensional Mobility Model

4.1 Markov Chain Model

The Markov chain model given in Figure 2 and

the balance equations (5)-(7) are valid for the two-

dirnensional moclel. However, in the two-dimensional

model, the transition probabilities at,, +l and b,, i,_l are

state dependent. Figure 3(a’) shows the cells in ring rl.

There are 6 hexagonal cells in ring rl and each cell has 6

edges. This results in a total of 36 edges. It can be seen

from Figure 3(a) that 12 of these edges are between cells

belonging to the same ring. There are 6 edges at the in-

side perimeter of the ring and there are 18 edges at the

outside perimeter of the ring. Given that the terminal

is at one of the cells in ring rl, the probabilities that a

movement will result in an increase or decrease of the

distance from the center cell are ~ and ~, respectively.

Similarly, Figure 3(b) shows the cells in ring rj. If the

terminal is located in ring rz, the probabilities that a

movement will result in an increase or decrease of the

distance from the center cell are ~ and ~, respectively.

In general, given that the mobile terminal is located in

ring r,, the probabilities that a movement will result in

an increase or decrease in the distance from the center

cell, denoted by p+ (i) and p– (i), respectively, are given

as:

p+(i)=;+;
~-(i)=;–;

(39)

(40)

The transition probabilities for the two-dimensional

model are given as follows:

(42)

Given the balance equations and the above transition

probability equations, we can solve for the steady state

probabilities recursively by expressing the probability of

each state in terms of the probability of state d. The

law of total probability can then be used to solve for

the value of pd, d. We refer to the solution obtained

by this recursive method the e~acf solutlon For the

two-dimensional model, however, a simple closed form

expression for the steady state probabilities may be dif-

ficult to obtain. In the next subsection, we will sol~e

for the approximate closed form solutions for the steady

state probabilities. This approximate solution is useful

in determining the optimal threshold distance.

4.2 Approximate Solution for Steady State
Probability ies

In order to obtain the approximate steady state prob-

abilities for the two-dimensional model, we modify the

transition probability y equations (41) and (42) as follows:

(43)

b,,t-l = ; (44)

Here we omit the & terms in a,,, +l and b,,, _ 1 expres-

sions. The effect of this modification is more signifi-

cant when i is small. When i is large, the value of

& is negligible. For example, for q = 0.1 and i = 5,

& = 3,33 x 10–3. In the rnacrocell environment wheN’

the size of cells is large, the movement probability q IS

relatively small. The value of & is small even for small

values of i. In the microcell environment where size of

cells is small, the probability of moving to a neighboring

cell, q, is relatively high. Because of the large proba-

bility of movement, cells are usually further away from

the center cell. This means that the state, i, of a mobile

terminal is relatively large and & is small because of a

large value of i. In Section 7 we demonstrate that the

optimal threshold distance obtained using these approx-

imate transition probabilities differs from that obtained

using the exact transition probabilities only by 1 rmg or

less most of the times.

Exactly the same steps (as in the one-dimensional

model) can be used to solve for the approximate closed

form expressions here. We. therefore, skip the steps and

the approximate steady state equations are given as fol-

lows:

d~3:
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RI CY-R2
R&lPd,d

‘~’d = R; – RIR3
(47]

R2CY– R3

‘Z’d = R~ – R1R3
R&~pd,d (48]

S~_Z(Rq@– R3) – S,_3(R1a – R2)
Pi,d =

R; – R1R3
R&~pd,d

for2<i<d (49)

The definitions of Ri, el and ez are the same as in the

one-dimensional model. Their expressions are given by

equations (24), (16) and (17), respectively. In this case,

a and 1{1 to I(4 are defined as:

q
Iil = –3(U – 2)

I<z = (3CY – CY2–a3)(e~ – e?)

K3 = (2a2 + 2cY –3)(e~ – e,)

1{4 = –(0 + l)(e~ – e?)

Boundary cases:

d=O:

po,o = 1.0

d=l:

2q + 3C
Po,l “ —

5q + 3C

3q
Pl,l = —

5q + 3C

d=2:

3c+q
po,~ = —

3C + 4q

Pl)2 =
q(3c + 2q)

4q~ + 7qc + 3/

P2,2 =
q2

4q2 + 7qc + 3c~

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

5 Location Update and Terminal Paging

costs

The steady state probabilities obtained in the pre-

vious section allow us to determine the cost associated

with both location update and terminal paging for a

given threshold distance and maximum paging delay pa-

rameters. Now we first look into the case where maxi-

mum paging delay is at its minimum of one polling cy-

cle. This delay bound is of special interest because a

delay of one polling cycle is also provided by the LA

based scheme [8]. Results can be used to compare our

scheme with the LA based scheme. We will also extend

our result to obtain the terminal paging cost, when the

maximum delay is higher than one polling cycle.

Assume that the costs for performing a location up-

date and for polling a cell are CT and P’, respectively.

Given a threshold distance d, we denote the average lo-

cation update cost by Cl, ( d). The average location up-

date cost can be determined by multiplying Cr by the

probability at which the terminal exceeds the threshold

distance given below:

c~(d) = Pd,dad,d+lu (61)

The average terminal paging cost, C. ( d, m), is a function

of both the threshold distance, d, and the maximum

paging delay, m. When the maximum paging delay is

one polling cycle, the network has to poll all cells in the

destination terminal’s residing area at, the same time.

The average terminal paging cost as a function of the

threshold distance d for a maximum delay of one polling

cycle is then:

C’u(d, 1)= cg(d)v’ (62)

where c is the call arrival probability and g( cl) is the

number of cells that are within a distance of d from

the center cell. The expression of g(d) is given in equa-

tion ( 1). When the maximum paging delay is higher

than one polling cycle, the residing area is partitioned

into a number of subareas such that each subarea con-

sists of one or more rings (as described in Section 2.) A

mobile terminal is at ring ~i when its distance from its

center cell is i. The probability that the mobile terminal

is in ring ri is, therefore, equal to the steady state prob-

ability of state i, p, ,d. The probability y that a terminal

is located in subarea .4,7 given a threshold distance of d

is:

(63)

We denote the number of cells in subarea Aj by iV(.4j ),

Given that the terminal is residing in subarea Aj, the

number of cells polled before the terminal is successfully

located is:

u,= 5 N(il,) (64)

k=l

Then, the average paging cost can be calculated as fol-

lows:

c.(d, m) = CL- ~~,,dlo, (65)

i=l

The average total cost jor locatzon update and termznal

pagtng is:

~T(d, ?n) = c.(d) + C,, (d, m) (66)
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6 Optimal Threshold Distance

The results obtained in Section 5 let us determine

the average total cost CT (d, m), equation (66), for loca-

tion update and terminal paging given a threshold dis-

tance d and maximum paging delay m. Analytical re-

sults demonstrate that, depending on the method used

to partition the residing area of the terminal, the total

cost curve may have local minimum. We, therefore, can-

not use gradient decent methods to locate the optimal

distance. One way of determining the optimal thresh-

old distance is to limit the location update distance to

a predefine maximum D. The optimal location update

distance can then be found by evaluating the total cost

for each of the allowed threshold distances O s d s D.

The threshold distance that results in the minimum to-

tal costs is selected as the optimal distance d*. Limit-

ing the threshold distance to a maximum value may not

have significant effect on the total cost. For typical call

arrival and mobility values, the optimal distance rarely

exceeds 50. Besides, the size of a local coverage area is

usually limited to the boundary of a city, it is realistic to

require the mobile terminal to perform a location update

before it leaves the local coverage area. This method can

always locate the optimal distance in D + 1 iterations.

Another method for determining the optimal thresh-

old distance is an iterative algorithm called simulated

annealing [2, 5]. In simulated annealing, potential so-

lutions are generated and compared in every iteration.

This potential solution is accepted or rejected proba-

bilistically consistent with the Boltzmann distribution

law involving a temperature T. During the course of the

annealing, T k reduced according to a coolang schedule.

When a suitably low temperature is finally reached, the

algorithm terminates on an optimal or near optimal so-

lution. The algorithmic structure of simulated annealing

is given as follows:

T+--l;

d - RandomJnzto;
k-l;

do

d’ - generate(d);

Ad+ total_cost(d) - total_cost(d’);

d + reptace((d, d’), Ad);

TF$;

k +k+l;

while(T > eztt-T)

To start the annealing process, a random threshold dis-

t ante is generated by the Randorn_Init( ) routine. The

generate(d) routine returns a threshold distance value

close to d. Based on equation (66), total-cost(d) returns

the average total cost for location update and terminal

paging given the threshold distance d. The values of y

and exit-T are adjusted based on the required accuracy

of the result. Assume that rando returns a random

number in [0,1), the repiace((d, d’), Ad) routine is given

as follows:

replace((d, d’), Ad)

if Ad z O return d’;

if (rand( ) < ezp((Ad/T)) return cl’;

return d;

Due to space limitation, we will not explain m detail

the theory behind simulated annealing. Interested read-

ers may refer to [2, 5]. We note that simulated annealing

is not the only method available for finding the global

minimum of a discrete function. There are other opti-

mization methods reported m literature [4]. These meth-

ods can find the optimal threshold distance at varying

degrees of speed and efficiency.

7 Analytical Results

We first present the numerical results for both the

one- and two-dimensional model using some typical pa-

rameters. For the two-dimensional model, the exact

steady state probability solutions (discussed in Sec-

tion 4.1) are used. Figures 4(a) and 4(b) show the av-

erage total cost as the probability of moving is varied

from 0.001 to 0.5. The call arrival probability, locatlon

update cost and paging cost are fixed at 0.01, 100 and 1,

respectively. We consider three maximum paging delay

bounds (1,2 and 3 polling cycles, respectively) as well

as the case of unconstrained delay. In all cases, the av-

erage total cost increases as the probability of moving

increases. The cost is the highest when the maximum

paging delay is 1 polling cycle. As the maximum pag-

ing delay increases, the average total cost drops The

reduction in cost is significant even for a maximum pag-

ing delay of only 2 polling cycles. Figures 5(a) and 5(b)

present similar results for the one- and two-climenslonal

models, respectively. However, the probability of mov-

ing is fixed at 0.05 and the call arrival probability is

varied between 0.001 and 0.1. The average total cost

increases as the call arrival probability increases. Dis-

continuities appear in some curves due to the sudden

changes in the optimal threshold distances. As in the

case of Figures 4(a) and 4(b), the average total cost de-

creases as the maximum paging delay increases. The

decrease is more significant when the maximum paging

delay increases from 1 to 2 polling cycles than from 2 to

3 polling cycles. This demonstrates that a large maxi-

mum paging delay is not necessary to obtain significant

reduction in cost. In most cases, the average total costs

are very close to the minimum value (when there is no

paging delay bound ) when a maximum paging delay of

3 polling cycles is used.

Table 1 shows the optimal threshold distances and

the associated average total cost Yalues for the one-
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Table 1:

delay = 1 delay = 2 delay = 3 unbounded
b’ d“ C’T d* c~ d“ CT d“ CT
1 II ()125 0 0 125 0 0 125 0 0 125
y () 0150 0 0150 0 0150 0 0150
3 0 0175 0 0175 0 0175 0 0175
4 0 0200 0 (J zoo o 0 ~oc) o 0200
5 0 0 2s15 0 0225 0 0225 0 0 2z5

6 0 0 ~5(j 0 0250 0 0250 0 0250
7 0 0275 1 0270 1 0270 1 0 ~~o

8 0 0300 1 o,~82 1 0282 1 0 ~8~

9 0 0325 1 0293 2 0 ~gl ~ O 291
10 0 0350 1 0305 2 0296 ~ o ~g~

20 1 0.52?7 1 0418 2 0339 3 0338
30 2 0630 2 0465 2 0382 3 0357
40 2 0673 3 0486 3 0415 4 0371
50 2 0716 3 0506 3 0435 4 0381
60 2 0.760 3 0.526 3 0454 5 0386
70 ? 0803 3 0545 3 0474 6 0391

80 2 0846 3 0565 3 0494 6 0394
90 3 0878 4 0579 5 0510 7 0396

100 3 0897 4 0589 5 0515 7 0397
200 3 1095 4 0686 6 0548 12 0401
300 4 1 193 6 0724 7 0565 17 0402
400 4 1 ~go ,; 0750 7 0379 22 0402
500 5 1.351 6 0776 7 0593 ~~ 0402
600 5 1401 6 0803 7 0607 32 0402
700 5 1451 6 0829 7 0 6~1 37 0402
800 5 1501 6 0855 7 0635 4? O 402
900 6 1537 8 0868 7 0649 47 0 40?
1000 6 1563 8 0876 7 0663 52 0402

Optimal Threshold Distance and Average Total Cost for One-Dinlensional

dimensional model as the location update cost varies.

The call arrival and movement probabilities are set to

0.01 and 0.05, respectively. The location update cost

U k varied from 1 to 1000 while the paging cost V re-

mains at 10. It is demonstrated that both the optimal

threshold distance d“ and the total cost CT increase as

the location update cost increases. This result is intu-

itive. When the location update cost is low, there is

an advantage of performing location update more fre-

quently in order to avoid paying the relatively high pag-

ing cost when an incoming call arrives. When the lo-

cation update cost is high, the paging cost is relatively

low. There is a cost advantage if location update is per-

formed less frequently. Table 2 shows similar results for

the two-dimensional model under the same parameter

values. Define the near optimal threshold distance, d*’,

to be the optimal threshold distance obtained using the

approximated steady state probabilities obtained in Sec-

tion 4.2. Also define the near optimal average total cost,

C$, to be the total cost obtained when the near optimal

threshold distance is used. It can be seen from Table 2

that the differences between d* and d*’ are within 1 from

each other almost all the time. In most cases, the two

values are the same. Table 2 also demonstrates that the

values of CT and C+ are very close to each other when

the optimal threshold distance is higher than 1. The

worst cases occur when the optimal threshold distance

is 1 and the near optimal threshold value is O. Under

Mobility Model

this situation, the value of C$ can be double that, of CT,

This happens because a threshold distance of O generally

results in relatively high total cost if the optimal thresh-

old distance is not O. This situation can be alleviated by

a simple modification to the mechanism used to locate

the near optimal threshold distance. Assume C! and

C+ to be the exact average total cost when a threshold

distance of O and 1 are used, respectively. When the near

optimal threshold dist ante d*’ 1s O, we replace it by 1 if

C’} < C’$-. Otherwise it stays unchanged. This method

guarantees that a threshold distance of O will not be se-

lected if a threshold distance of 1 can result in lower

cost. Obtaining the C’; and C+ is straightforward and

the additional computation revolved is minimal, Since

the computation of d*’ is less revolved as compared to

d* because of the availability of the closed form solution,

The near optimal threshold distance is therefore useful

in dynamic location update and paging schemes where

computation allowed IS very limited. The saving in con~-

putation cost may outweight the slight increase in total

location update and terminal paging costs

The numerical results obtained in this section deluon-

strate that:

a Significant reduction in average total cost CT(d, m)

can be obtained by a small increase of the maxi-

mum paging delay m from its minimum value of

one polling cycle.
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0-.001 0.01 0,1
Probability of moving

(a)

0-.001 0.01 0.1
Probability of moving

lb)

Figure 4: Average Total Cost versus Probability of Mov-

ing for (a) One-Dimensional Mobility Model and (b)

Two-Dimensional Mobility Model.

The optimal threshold distance d“ varies as the

maximum delay m is changed. This means that

the optimal threshold distance selected by a scheme

that assumes unconstrained paging delay may not

be appropriate when the paging delay is limited.

Our scheme allows the determination of the optimal

threshold distance at different values of the maxi-

mum paging delay m.

The near optimal threshold distances obtained us-

ing the approximate transition probability equa-

tions (43) and (44) are shown to be accurate. This

means that when computation cost is critical, the

near optimal threshold distance can be used with-

out causing significant increase in the total average

cost C~(d, m).

Conclusions

In this paper we introduced a location management

scheme that combines a distance based location update

0.6

0.5

0.4

0.3

0.2

0.1

n
o-

1.4

1.2

1

0.8

0,6

0.4

0.2

.001 0.01 0.1
Call arrival rate

(a)

o
0.001 0.01 0.1

Call arrival rate

(b]

Figure 5: Average Total Cost versus Call Arrival Prob-

ability y for (a) One- Dinlensional Mobility Model and (b)

Two-Dimensional Mobility Model.

mechanism with a paging scheme subject to delay con-

straints. The mobility of each terminal is modeled by a

Markov chain model and the probability distribution of

terminal location is derived. Based on this, we obtain

the average total location update and terminal paging

cost under given threshold distance and maximum de-

lay constraint. Given this average total cost function.

we determine the optimal threshold distance by using

an iterative algorithm. Results demonstrated that the

optimal cost decreases as the maximum delay increases.

However, a small increase of the maximum delay from

1 to 2 polling cycles can lower the optimal cost, to half

way between its values when the maximum delays are 1

and co (no delay bound’) polling cycles, respectively.

Most previous schelmes assulme that paging delay is

either unconstrained (such as [1, 3]) or confined to one

polling cycle (such as [8]). In the former case, it may

take arbitrarily long to locate a mobile terminal. While

in the latter case, the network cannot take advantage

of situations when the PCN can tolerate delay of higher

than one polling cycle. Our scheme is more realistic as

the maximum paging delay can be selected based on the
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delay = 1 delay = 3 unbounded

u d“ d. ‘ CT c’~ d“ d* ‘ CT c~ d“ d* ‘ cT c~
1 0 0 0150 0.150 0 0 0150 0,150 0 0 0150 0150
~ o 0 0 ~oo 0.200 0 0 0200 0200 0 0 0200 (J ~oo

3 0 0 0 25(3 (j ~5(J o 0 0250 0250 0 0 0 ~50 O 250
4 0 0 0300 0300 0 0 0300 0300 0 0
~

0.300 0300
0 0 0.350 0350 0 0 0350 0350 0 0 0350 0350

6 0 0 0.400 0400 0 0 0400 0400 0 0 0400 0400
7 0 0 0,450 0450 0 0 0.450 0450 0 0 0450 0450
8 0 0 0.500 0500 0 0 0.500 0500 0 0 0500 0500
9 0 0 0550 0550 1 0 0542 0.550 1 0 0,542 0550
10 0 0 0600 0600 1 0 0.555 0600 1 0 0555 0600
20 1 0 0968 1100 1 0 0,689 1 100 1 0 0689 1 100
30 1 0 1.102 1600 1 0 0823 1.600 1 0 0823 1.600
40 1 0 1.236 2 100 1 0 0.957 2.100 1 0 0957 2 100
50 1 0 137’0 2.600 2 2 1074 1.074 2 2 1.074 1074
60 1 0 1504 3100 ? 2 1126 1 126 ~ ~ 1126 1 126

70 1 0 1638 3600 2 2 1.178 1.178 2 2 1 178 1178
80 1 1 1771 1771 ? 2 1231 1231 ~ 2 1,231 1231

90 1 1 1905 1.905 2 2 1283 1283 y 2 1 283 1283
100 1 1 ? 039 2039 2 2 1.335 1335 2 2 1.335 1335
200 2 1 2945 3379 2 2 1858 1858 3 3 1683 1 683
300 2 ? 3468 3.468 3 2 2 372 2,381 4 3 1912 1,918

400 2 2 3991 3991 3 3 2 608 2608 4 4 2 025 2 025
500 2 2 4514 4514 3 3 ? 843 2.843 4 4 ? 138 2 138
600 2 2 5036 5036 5 3 2,955 3079 5 5 ~ 2(J4 ~,~”4

700 3 2 5349 5559 5 5 3011 3011 5 5 ~ ~60 2 ~60

800 3 2 5585 6082 5 5 3066 3066 5 5 2315 ? 315
900 3 2 ~ 8~o 6.604 5 5 3 ~p~ 3.122 6 6 2346 2 346
1000 3 2 6056 7 127 5 5 3177 3177 6 6 ? 374 2374

Table 2: Optimal Threshold

particular system requirement.

Results obtained in this paper can

Distance and Average

be applied in static

location update schemes such that the network deter-

mines the location update threshold distance according

to the average call arrival and movement probabilities

of all the users. This result can also be used in dynamic

schemes such that location update threshold distance is

determined continuously on a per-user basis.

Future research includes the simplification of the

threshold distance optimization process such that our

mechanism can be implemented in mobile terminals with

limited power supply. Also, an optimal method for parti-

tioning the residing area of the terminal should be devel-

oped. In any case, our method for obtaining the optimal

location update threshold distance is not limited to the

partitioning scheme described in this paper. The total

cost and hence the optimal threshold distance can be ob-

tained by our method when other partitioning methods

are used.
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