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Abstract— We study the problem of scheduling packet trans-
missions for data gathering in wireless sensor networks. The focus
is to explore the energy-latency tradeoffs in wireless communi-
cation using techniques such as modulation scaling. The data
aggregation tree – a multiple-source single-sink communication
paradigm – is employed for abstracting the packet flow. We
consider a real-time scenario where the data gathering must
be performed within a specified latency constraint. We present
algorithms to minimize the overall energy dissipation of the
sensor nodes in the aggregation tree subject to the latency
constraint. For the off-line problem, we propose (a) a numerical
algorithm for the optimal solution, and (b) a pseudo-polynomial
time approximation algorithm based on dynamic programming.
We also discuss techniques for handling interference among
the sensor nodes. Simulations have been conducted for both
long-range communication and short-range communication. The
simulation results show that compared with the classic shut-
down technique, between 20% to 90% energy savings can be
achieved by our techniques, under different settings of several
key system parameters. We also develop an on-line distributed
protocol that relies only on the local information available at each
sensor node within the aggregation tree. Simulation results show
that between 15% to 90% energy conservation can be achieved
by the on-line protocol. The adaptability of the protocol with
respect to variations in the packet size and latency constraint is
also demonstrated through several run-time scenarios.

Index terms – System design, Mathematical optimization

I. INTRODUCTION

In many applications of wireless sensor networks
(WSNs) [1], data gathering is a critical operation needed
for extracting useful information from the operating environ-
ment. Recent studies [2], [3] show that data aggregation is
particularly useful in eliminating the data redundancy and
reducing the communication load. Typical communication
patterns in data aggregation involve multiple data sources and
one data sink (or recipient). Thus, the corresponding packet
flow resembles a reverse-multicast structure, which is called
the data aggregation tree.

Energy-efficiency is a key concern in WSNs. The large
number of sensor nodes involved in such networks and the
need to operate over a long period of time require careful
management of the energy resources. In addition, wireless
communication is a major source of power consumption.
Since a significant portion of the communication in WSNs
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is due to data gathering, it is crucial to design energy-efficient
communication strategies in implementing such an operation.

One useful approach for energy-efficient communication is
to explore the energy-latency tradeoffs. An important obser-
vation in [4] is that in many channel coding schemes, the
transmission energy can be significantly reduced by lowering
transmission power and increasing the duration of transmis-
sion. Techniques such as modulation scaling [5] have been
proposed for implementing such tradeoffs.

In this paper, we explore the above tradeoffs in the context
of data gathering in WSNs, subject to application level perfor-
mance constraints. We consider a real time scenario where the
raw data gathered from the source nodes must be aggregated
and transmitted to the sink within a specified latency con-
straint. Our technique is applicable to any given aggregation
function. The objective function is to minimize the overall
energy dissipation of the sensor nodes in the aggregation tree
subject to the latency constraint. Compared with [4], [6], we
use a more general and accurate energy model for abstracting
the energy characteristics for packet transmission in WSNs.
Specifically, the transmission energy does not monotonically
decrease as the transmission time increases – the transmission
energy may increase when the transmission time exceeds some
threshold value [7]. We refer to the above general model as
the non-monotonic energy model.

For the off-line version of the problem, we present (a) a
numerical algorithm for the optimal solution, and (b) a pseudo-
polynomial time approximation algorithm based on dynamic
programming. We also discuss techniques for handling in-
terference. Simulations were conducted for both long-range
communication (with radius around 32 m) and short-range
communication (with radius around 7 m). The simulation
results from the scenarios we studied show that compared with
the classic technique that transmits the packets at the highest
speed and shut down the radio afterwards, between 20% to
90% energy savings can be achieved by our techniques, under
different settings of several key system parameters. We also
develop an on-line distributed protocol that needs only local
information of the aggregation tree. Simulation results show
that between 15% to 90% energy conservation can be achieved
by the on-line protocol. The adaptability of the protocol is also
demonstrated through several run-time scenarios.
Related work: The most relevant works include [4]–[6], [8],
[9]. The problem of minimizing the energy dissipation for
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transmitting a set of packets over a single-hop link subject
to a specified latency constraint is discussed in [4]. An
extension of the problem that considers a single transmitter
and multiple receivers is investigated in [6]. In [5], an on-line
policy for adjusting modulation level is proposed for single-
hop communication. In [8], modulation scaling is integrated
into the Weighted Fair Queuing (WFQ) scheduling policy.
In [9], the problem of balancing the energy dissipation along
a multi-hop communication path is studied.

To the best of our knowledge, this is the first paper that
addresses packet scheduling in a general tree structure. The
challenges of our problem are multi-fold. Firstly, the energy
functions can vary for different links. It is therefore required
to develop general optimization techniques instead of explicit
solutions. Secondly, the latency constraint for data gathering
in real applications is typically given by considering the
aggregation tree as a whole. It is difficult to directly apply
the techniques in [4] and [6], as they require explicit latency
constraints over each link. Lastly, we consider non-monotonic
energy functions, which has not been previously addressed.
Paper Organization: We discuss the background of our work
in Section II. The packet transmission problem is defined in
Section III. Off-line algorithms for the problem are presented
in Section IV. In Section V, a distributed on-line protocol is
described. Simulation results are shown in Section VI. Finally,
concluding remarks are made in Section VII.

II. BACKGROUND

A. Data Aggregation Paradigm

We abstract the underlying structure of the network as a data
aggregation tree. This is essentially a tree that aggregates and
gathers information from multiple sources enroute to the sink.
Such a topological structure is common to data-centric routing
schemes for sensor networks such as Directed Diffusion [2],
[3]. While there may be transients during the route creation
phase, we assume that this tree, once formed, lasts for a
reasonable period of time and provides the routing substrate
over which aggregation can take place during data gathering.

Specific techniques have been previously proposed for com-
puting aggregates on such trees [10]. For our analysis we
make the following abstraction: each sensor node in the tree
aggregates the information from all its children or by local
sensing so that it results in a reduced size packet that is
dependent on the subtree rooted at the sensor node and an
aggregation factor, k ∈ [0, 1]. For simplicity, we assume that
each source node generates a data packet with the same size,
s. Let d denote the number of source nodes in the subtree
rooted at a sensor node, and s′ denote the amount of output
data after aggregation. Intuitively, low correlations among data
make s′ close to ds, while high correlations make s′ close
to s. We use the above aggregation factor, k, to indicate the
degree of correlations among data with k = 1 meaning the
highest correlations and k = 0, the lowest. Based on the above
intuition, we abstract the relationship between s′ and s using
equation (1). It can be verified that s′ = s when k = 1 and
s′ = ds when k = 0.

s′ =
ds

dk − k + 1
(1)

We consider the scenario that the data gathering must
be completed within a specified latency constraint, which is
necessary for real-time monitoring or mission-critical appli-
cations. To enforce the latency constraint requires the use
of time-synchronization schemes such as [11]. The recently
proposed epoch-based scheme (refer to [10]) instantiates the
latency constraint by the length of each epoch. Prior work,
however, has not considered the possibility of using packet-
scheduling techniques that trade latency for energy in such a
scenario. This is the focus of our work.

B. Non-Monotonic Energy Model

We model the transmission energy using the example of
modulation scaling [5] based on Quadrature Ampitude Modu-
lation (QAM) scheme [12]. Note that the algorithms presented
in this paper are extendible to other modulation schemes as
well as other techniques that provide energy-latency tradeoffs,
such as code scaling [13]. Consider a packet of s bits to
be transmitted between two sensor nodes. Assuming that the
symbol rate, R, is fixed, the transmission time, τ , can be
calculated as [5]:

τ =
s

b ·R , (2)

where b is the modulation level of the sender in terms of
the constellation size (number of bits per symbol). The corre-
sponding transmission energy can be modeled as the sum of
output energy and electronics energy. Though the transmission
energy essentially depends on the setting of b, we would like
to characterize it as a function of τ [5], denoted as w(τ), to
illustrate the key energy-latency tradeoffs in this paper.

w(τ) = [C · (2 s
τ·R − 1) + F ] · τ ·R , (3)

where C is determined by the quality of transmission (in terms
of Bit Error Rate) and the noise power, and F is a device-
dependent parameter that determines the power consumption
of the electronic circuitry of the sender. Further, the output
power, Po, and the electronics power, Pe, can be modeled as
follows [5]:

Po = C ·R · (2b − 1) and (4)

Pe = F ·R . (5)

We consider the radio modules from [7], [14]. Typically, for
short-range communication with R = 1 Mbaud, the electronics
power of the radio is approximately 10 mW, while the output
power is approximately 1 mW (at 4-QAM). From equations (4)
and (5), it can be derived that C ≈ 3× 10−10 and F = 10−8.
Further, we consider a d2 power loss model, where d is the
communication radius. Assuming that it takes 10 pJ/bit/m2 by
the amplifier to transmit one bit at an acceptable quality [15],
we infer that the desired communication radius is

√
50 ≈ 7

m (from 1 mW
2×106 bit/sec = 10 pJ/bit/m2× d2). In our study, we

consider one more case of communication in WSNs – long-
range communication with radius at

√
1000 ≈ 32 m and the

output power at 20 mW for 4-QAM (C ≈ 7× 10−9).
Figure 1 plots the energy functions with b ∈ [2, 8] for

the long and short range communication based on the above
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analysis. In practice, b is typically set to positive integers
(indicated by circles in the figure), resulting in discrete values
of τ . It can be observed that the the transmission energy for
the short-range communication eventually increases after the
transmission time exceeds 300 nSec. Intuitively, it is more
beneficial to explore the energy-latency tradeoffs for the long-
range communication. However, we demonstrate in Section VI
that up to 60% energy savings can still be achieved by our
algorithms for the short-range communication.
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Fig. 1. Energy-latency tradeoffs for transmitting one bit data

III. PACKET TRANSMISSION PROBLEM OVER DATA

AGGREGATION TREES

A. Data Aggregation Tree

Let T = (V,E) denote the data aggregation tree, where V
denotes the set of n sensor nodes, {Vi : i = 1, . . . , n}, and
E denotes the set of directed communication links between
the sensor nodes. Let M denote the number of leaf nodes in
the tree. Without loss of generality, we assume that the sensor
nodes are indexed in the topological order with V1, . . . , VM

denoting the M leaf nodes and Vn denoting the sink node.
Every link in E is represented as a tuple (i, j), meaning that
a packet, denoted as Pi, needs to be transmitted from Vi to
Vj . Let si denote the size of Pi.

Raw data is generated by a set of source nodes from V
(not necessarily leaf nodes). Data aggregation is performed
by any non-sink and non-leaf node (called an internal node
hereafter). We assume that aggregation is performed only
after all input information is available – either received from
children, or generated by local sensing. The aggregated data
is then transmitted to the parent node. Although we use the
expression in equation (1) as a typical aggregation function,
please note that our technique is not limited to this function
alone. The only requirement is that we can derive the value of
si’s based on the functions. Thus, even different functions can
be used to specify the aggregation at different sensor nodes.
The time and energy costs for generating raw data at source
nodes or aggregating data at internal nodes are considered to
be negligible.

Let Ti denote the subtree rooted at any node, Vi, with Tn =
T . A path in T is defined as a series of alternate nodes and

edges from any leaf node, Vi, i ∈ {1, . . . , M}, to Vn, denoted
as pi. We use the notation Vj ∈ pi to signify that node Vj is
an intermediate node of path pi.

We assume that sensor nodes are completely shutdown when
there is no packet to transmit or receive. Mechanisms such as
signaling channel [1] can be used for synchronization between
sensor nodes before any packet transmission. However, the
modeling of power assumption of such mechanisms is beyond
the scope of this paper.

B. Problem Definition

Let Γ denote the latency constraint. For ease of analysis, it
is assumed that raw data is available at source nodes at time
0. Further, we assume that the energy functions for all links
in the target aggregation tree follow the model described in
Section II.

A schedule of packet transmission is defined as a vector
�τ = {τi : i = 1, . . . , n− 1}, where τi is the time duration for
packet transmission over link (i, j). Since a sensor node can
transmit its packet only after receiving all input packets from
its children, the start time of each transmission is implicitly
determined by �τ . The transmission latency of a path, pi, is
denoted as Li and calculated as Li =

∑
j:Vj∈pi

τj . A schedule
is feasible if for each pi ∈ T , we have Li ≤ Γ.

Our goal is to improve the energy-efficiency of the system.
Various objective functions can be developed for interpreting
energy-efficiency. For ease of analysis, the objective function
defined in this paper is the overall energy dissipation of the
sensor nodes in the aggregation tree.

Let wi(τ) denote the energy function of sensor node Vi,
with mi denoting the value of τ ∈ (0, T ] when wi(·) is
minimized. Moreover, by assuming a first order energy model,
the reception energy can be modeled by doubling the value
of F in equation (3). Thus, we state the packet transmission
problem (called PTP) as follows:
Given:
a. a data aggregation tree T consisting of n sensor nodes,
b. energy functions for each link (i, j) ∈ E, wi(τ), and
c. the latency constraint, Γ;
find a schedule of packet transmission, �τ , so as to minimize

f(�τ) =
n−1∑
i=1

wi(τi) (6)

subject to

∀pi in T,Li =
∑

j:Vj∈pi

τj ≤ Γ . (7)

The above formulation differs from the problem defined
in [6] in two key aspects. (1) We employ a tree structure packet
flow where the latency constraint is imposed on each path of
the tree. (2) The non-monotonic energy model in Section II-
B indicates an upper-bound on the transmission time of each
packet, i.e., to optimize PTP, we should have τi ≤ mi, for each
i = 1, . . . , n − 1. The consequences of the above differences
are discussed in Section IV-A.

We note that the above model assumes no MAC layer
interference, which can be realized by multi-packet reception
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Begin
1. Set k ← 0 // initialize iteration counter
2. For (i, n) ∈ E, set τk

i ← min{Γ,mi} // initialize transmission time for links to the sink
3. For (i, j) ∈ E such that j �= n, set τk

i ← 0 // initialize transmission time for other links
4. Set flag ← 0 // flag to keep track of convergence in the iterations
5. While flag = 0
6. k ← k + 1 // increment the iteration counter by 1
7. For each Vi with i from n− 1 downto M+1 // perform local optimization for each internal node
8. ({τk

j }(j,i)∈E , τk
i )← best({τk−1

j }(j,i)∈E , τk−1
i ) // move right the start time of transmission from Vi

9. For (i, n) ∈ E
10. Set τk

i ← min{mi,Γ− (maxVi∈pj
{Lj} − τk

i )} //increase the transmission time for links to the sink
11. if �τk = �τk−1, flag ← 1 // check convergence
End

Fig. 2. Pseudo code for EMR-Algo

(MPR) techniques [16]. We further elaborate this issue in
Section IV-C.

IV. OFF-LINE ALGORITHMS FOR PTP

In this section, we consider an off-line version of PTP
(called OPTP) by assuming that the structure of the aggre-
gation tree and the energy functions for all sensor nodes
are known a priori. We first describe an extension of the
MoveRight algorithm [6] to get an optimal solution for OPTP.
A faster dynamic programming based approximation algorithm
is then presented. Techniques for handling interference are also
discussed.

A. A Numerical Optimization Algorithm

Since we must have τi ≤ mi in an optimal solution to
OPTP, the latency of a path does not necessarily equal Γ. We
show the following necessary and sufficient condition for the
optimality of the OPTP problem.

Lemma 1: A schedule, �τ∗, is optimal for OPTP iff

1) for any node Vi with τ∗
i < mi, the length of at least one

path that contains Vi equals Γ; and
2) for any internal node, Vi, we have

ẇi(τ∗
i ) =

∑
(j,i)∈E

ẇj(τ∗
j ) . (8)

Corollary 1: Consider an optimal schedule, �τ∗, for OPTP;
the following hold:

1) If τ∗
i = mi for some Vi ∈ V , we have τ∗

j = mj for all
sensor nodes in Ti.

2) If τ∗
i < mi for some Vi ∈ V , we have τ∗

j < mj for all
ancestors of Vi.

Due to space limitations, the proof of Lemma 1 and Corol-
lary 1 is omitted in this paper. Details of the proof can be
found in [17].

In this section, we extend the MoveRight algorithm from [6]
to solve OPTP in a general-structured aggregation tree with
non-monotonic energy functions. The pseudo code for the

extended MoveRight algorithm (EMR-Algo) is shown in Fig-
ure 2. In the figure, τk

i denotes the value of τi after the k-
th iteration. Initially, we set the starting time for all packet
transmission to zero – the transmission time for all the links
to the sink is set to min{Γ,mi}, while the transmission time
for the rest links is set to 0 (Steps 2 and 3). The main idea
is to iteratively increase (move right) the starting times of
packet transmissions, so that each move locally optimizes our
objective function. Finally, this iterative local optimization
leads to a globally optimal solution.

The best(·) function returns the transmission durations for
node Vi and its children, such that Lemma 1 holds for Vi with
respect to the invariant that τk

i ≤ mi. Since the value of τk
i

must lie within (0, τk−1
i ], the best(·) function can be easily

implemented using binary search. Step 10 is important as it
moves right the complete time of transmissions on links to the
sink. This movement stops when the latency constraint of all
paths is reached.

The proposed EMR-Algo is distinguished from the
MoveRight algorithm in two key respects. (recall the differ-
ences between our problem and the one defined in [6]). (1) The
best(·) function respects Lemma 1 regarding the optimality of
OPTP in a tree structure. (2) The transmission time for any
Vi ∈ V is bounded by mi, enforced by lines 2, 8 and 10.

The correctness of EMR-Algo can be proved by exploring
the convexity property of the energy functions. Let �τ∗ =
{τ∗

1 , . . . , τ∗
n−1} be the optimal schedule. Let s∗i = 0, for

i = 1, . . . ,M ; and s∗i = max(j,i)∈E(s∗j + τ∗
j ), for i =

M+1, . . . , n−1. As previously stated, {τk
1 , . . . , τk

n−1} indicate
the transmission time of nodes V1, . . . , Vn−1 after the k-th
pass of EMR-Algo. Let sk

i = 0, for i = 1, . . . ,M , and
sk

i = max(j,i)∈E(sk
j + τk

j ), for i = M, . . . , n− 1. We have:
Theorem 1: Let sk

i and s∗i , i = 1, . . . , n − 1 be as defined
above. Then

1) sk
i ≤ sk+1

i ;
2) sk

i ≤ s∗i ; and
3) s∞i = s∗i .

The proof of Theorem 1 is presented in Appendix I.
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The convergence speed of EMR-Algo depends on the struc-
ture of the aggregation tree and the exact form of the energy
functions. It is therefore difficult to give a theoretical upper
bound on the number of iterations. In Section VI, we show the
running time of EMR-Algo for simulated problems. However,
by approximating wi(τ) with a set of interpolated discrete
values, we develop a pseudo-polynomial time approximation
algorithm based on dynamic programming. We present the
approximation algorithm in Section IV-B.

B. A Dynamic Programming Based Approximation Algorithm

For ease of analysis, we assume that for each sensor node, D
discrete values are evenly distributed over [0,Γ] in the domain
of τ . Let ε be the difference between two adjacent values. That
is ε = Γ

D . Hereafter, D is called the approximation accuracy.
Higher value of D leads to a more accurate approximation
of the energy function. By changing D, we can explore the
tradeoffs between the quality of the solution and the time cost
of the algorithm.

Let g(Vi, t) denote the minimal overall energy dissipation
of a subtree Ti rooted at Vi within latency constraint t. The
original OPTP problem can be expressed as g(Vn,Γ). It is
clear that for any sensor node Vi, g(Vi, t) can be computed as
the sum of (a) the energy dissipation for packet transmission
by the children of Vi, and (b) the energy dissipated by
transmitting packets within the subtrees rooted at each child of
Vi. Additionally, the packet transmission time from any child
of Vi can take t

ε values, namely ε, 2ε, . . . , t. Therefore, we
have the following recursive representation of g(Vi, t):

g(Vi, t) =




wi(t), for 1 ≤ i ≤M

∑
(k,i)∈E

(
t
ε

min
j=1
{wk(jε) + g(Vk, t− jε)}),

otherwise.

(9)

The above representation is suitable for a dynamic program-
ming based algorithm (DP-Algo for short). DP-Algo can be
viewed as a procedure to build a table of size D×n (Figure 3).
The i-th column from the left side corresponds to sensor node
Vi, while the j-th row from bottom-up corresponds to jε. After
the execution of DP-Algo, the cell crossed by the j-th row and
the i-th column shall contain the value of g(Vi, jε).

To build the table, we start from the bottom left cell
that contains g(V1, ε) = w1(ε). The table is then completed
column by column, from left to right. To calculate the value
of g(Vi, jε) for i > M , we need to compare, for each child of
Vi, j different values by varying the packet transmission time
of the child. Therefore, the time cost for building up the table
is O((Γ

ε )2(|V |+ |E|), which is pseudo-polynomial due to the
factor Γ2.
A Special Case for Modulation Scaling: In practice, the
modulation levels are typically set to positive even integers.
Based on equation (2), it can be verified that the τi’s resulted
from different modulation levels are not evenly distributed
among [0,Γ]. Thus, DP-Algo cannot be directly applied.
However, one practical method is to, for each i, set τi obtained
by EMR-Algo or DP-Algo to the largest time duration below

g(V1, ε)

V1 V2 Vi Vn

ε
2ε

jε

Γ

g(Vi, jε)

g(V1, 2ε)

g(V1, jε)

g(V1, Γ)

g(Vn, ε)

g(Vn, Γ)

g(Vi, ε)g(V2, ε)

g(V1, 3ε)

Fig. 3. The g(·) table computed by DP-Algo

τi that can be achieved by an available modulation level. We
call the above method the rounding procedure.

C. Handling Interference

The definition of OPTP implicitly assumes that there is
no interference among the sensor nodes. Such an assumption
can be realized by using MAC layer scheduling or multi-
packet reception (MPR) through spatial, time, frequency, or
code diversity [16]. However, use of such techniques may
increase the hardware cost of the sensor nodes. In case the
above techniques are not available, one possible way for han-
dling interference is to intentionally set the latency constraint
imposed on OPTP to be less than the actual constraint. The
preserved laxity can then be used for accommodating the back-
off time of the sensor nodes when collision occurs.

A more systematic way is to carefully schedule the transmis-
sion of sensor nodes that can potentially interfere (or simply
interfere) with each other. The goal is to ensure that the
corresponding time periods for a group of interfering sensor
nodes do not overlap with each other. Intuitively, children of
a sensor node are interfering – they cannot send packets to
the parent at the same time. In the following, we describe
a modified DP-Algo under the hypothesis that any group of
interfering sensor nodes are children of the same node. Such
a hypothesis can be supported by carefully reconstructing the
aggregation tree (refer to Appendix II for details).

To solve OPTP with the above interference restriction is
actually non-trivial, as for any sensor node, the order of packet
transmission from its children matters – the child that transmits
earlier has a larger latency constraint over the subtree rooted
at the child. Our basic idea is to divide the latency constraint
over any subtree Ti (rooted at Vi) into two consecutive parts.
We schedule the packet transmission in the subtrees rooted at
each child of Vi with respect to the first part of the latency
constraint. The packets transmitted to Vi from its children are
then scheduled in the second part. Hence, the order of packet
transmission in the second part has no effects on the packet
scheduling in the first part. The optimal division of the latency
constraint over Ti can be found using dynamic programming
with the following recursive representation of g(Vi, t):
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g(Vi, t) =




wi(t), for 1 ≤ i ≤M
t
ε

min
j=1
{z(i, jε) +

∑
(k,i)∈E

g(Vk, t− jε)},

otherwise.

(10)

The function z(i, jε) returns a schedule for the packets
from children of Vi within time duration jε so that run-
time contentions can be avoided. Obviously, if j is less than
the number of children of Vi, no feasible solution exists.
Otherwise, we use the following greedy heuristic. Initially, the
transmission time from all children of Vi to Vi are set to ε.
Let the energy gradient of a sensor node be the energy gain
that can be obtained by increasing the current transmission
time of the node by ε. Note that the energy gradient can
be negative due to the non-monotonic energy functions. We
then increase the transmission time of the child with the
maximal positive energy gradient by ε. The above operation
is repeated until the sum of the transmission time of all
children reaches jε, or no more energy savings can be achieved
by increase the transmission time (i.e., the gradients of all
children are negative). We call the modified DP-Algo as the
DP-IA algorithm. It can be verified that the time complexity
of DP-IA is also O((Γ

ε )2(|V |+ |E|).

V. DISTRIBUTED ON-LINE PROTOCOL

The algorithms presented in Section IV all assume a com-
plete knowledge of the aggregation tree. However, the discrete
approximation of the energy function motivates an on-line
distributed protocol that relies on local information of the
aggregation tree only. To facilitate the on-line scheduling, we
make the following assumptions:

1) Some local unique neighbor identification mechanisms
are available at each sensor node for identifying the parent
and children.

2) Every sensor node Vi can derive the time cost for data
gathering within subtree Ti.

3) Every sensor node is able to measure its contemporary
power consumption, and hence its energy gradient –
the energy gain that can be obtained by increasing the
transmission time of the node by ε.

4) Interference among sensor nodes is minimized by using
either MPR techniques or MAC layer scheduling.

The local identifier in assumption 1 is commonly imple-
mented in protocols such as Directed Diffusion [2]. The
parent and children information is set up after constructing the
aggregation tree. Assumption 2 can be fulfilled by attaching
a time stamp to each packet from the leaf nodes (we shall
be assuming that time synchronization schemes, such as [11],
are available). In assumption 3, the power consumption and
energy gradient of a sensor node can be determined using
the system parameters provided by the hardware vendors
and the operating configuration of the system, such as the
modulation level. Assumption 4 only applies to each group
of interfering nodes, which are children of the same sensor
node from the hypothesis in Section IV-C. If the interference
is handled by MAC layer scheduling, the incurred time cost

for sequentializing the packet transmissions in each group
of interfering nodes can be accommodated by intentionally
reducing the latency constraint. When MPR technique is used,
however, there is no impact on the latency constraint.

In the following, we first describe the local data structure
maintained at each sensor node. A distributed adaptation
policy for minimizing the energy dissipation is then proposed.
Local Data Structure: Each sensor node, Vi, maintains a
simple local data structure (r, τi, τd). The flag r equals one
if Vi is the node with the highest positive energy gradient in
the subtree rooted at Vi, Ti, and zero otherwise. Field τi is
the time cost for transmitting the packet from Vi to its parent,
while τd records the time cost for data gathering within subtree
Ti (excluding τi).

The local data structure is maintained as follows. Every leaf
node attaches its energy gradient to the outgoing packet. Once
a sensor node, Vi, receives packets from all its children, the
node compares the energy gradients attached to each packet
and the energy gradient of its own. The value of r at Vi is
then set accordingly. If Vi is not the sink, the largest energy
gradient from the above comparison is attached to the packet
sent to the parent of Vi. The above procedure continues till all
the sensor nodes have the correct value of r. Fields τi and τd

can be easily maintained based on the above assumptions.
Adaptation Policy: The sink node periodically disseminates
a feedback packet to its children that contains the value of its
local τd and the difference between Γ and τd, denoted as δ.
Note that if Directed Diffusion [2] is used for maintaining the
aggregation tree, the feedback packet can be easily embedded
into the interest packet sent by the sink.

Once a sensor node, Vi, receives the feedback packet, it
checks its local data and performs one of the following actions.
To distinguish from the field τd in Vi’s local data, let τ ′

d denote
the field τd in the feedback packet.

1) If δ < 0, the transmission time for packet from Vi is
decreased by a factor of β, where β is a user-specified
parameter. The feedback packet is then forwarded to all
of Vi’s children.

2) If r = 1 and δ ≥ ε, the transmission time of Vi’s
outgoing packet is increased by ε. The local data structure
at Vi is updated accordingly; and the feedback packet is
suppressed.

3) Otherwise, the feedback packet is updated by setting δ =
δ + (τ ′

d − τi − τd) and τ ′
d = τd. The updated packet is

then forwarded to all children of Vi.
The rationale behind the above adaptation policy is that

when the latency constraint is violated, all the sensor nodes
send out packets in an increased speed. If Vi is the node with
the largest positive energy gradient in Ti and the latency laxity
allows, the second action is performed to reduce the energy
dissipation of Vi. Otherwise, the latency laxity is accumulated
and the sensor nodes in Ti are recursively examined.
Discussion: During each dissemination of the feedback packet,
the proposed on-line protocol increases the transmission time
for at most one sensor node per path. Such an increment
is guaranteed not to violate the latency constraint for each
path. Therefore, the on-line protocol converges when the
transmission latency of all paths reach the latency constraint,
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or for each Vi ∈ V , we have τi = mi. We assume that
each sensor node has q available modulation settings. Before
the protocol converges, a feedback packet would reduce the
modulation setting for at least one sensor node every time it
traverses the aggregation tree . Thus, the protocol converges
after the dissemination of at most nq feedback packets, where
n is the number of sensor nodes in the aggregation tree.

Various tradeoffs can be explored in implementing the above
protocol. Ideally, the adaptation should be performed under
a stable system state. Thus, the period, α, for disseminating
the feedback packet should be large enough to accommodate
oscillation in system performance. However, a larger period
means a longer convergence process with greater energy
dissipation. There is also a tradeoff involved in selecting the
value of β. A larger value of β leads to higher transmission
speed when the latency constraint is violated. However, extra
energy dissipation is caused if the violation is not dramatic.
Intuitively, β should be related to the severity of the violation,
which is indicated by the value of δ.

Another option to handle latency violations is to repeatedly
reduce the transmission time of the sensor nodes with the
smallest energy gradient till the latency constraint is satisfied.
Such an option is more aggressive in reducing incurred energy
cost. However, it requires more complex control protocol and
more importantly, increases the response time in handling
latency violations.

VI. SIMULATION RESULTS

To conduct the simulations, a simulator was developed
using the PARSEC [18] software, which is a discrete-event
simulation language. The baseline in our simulations is that
all sensor nodes send the packet at the highest speed and
shutdown the radio afterward. This policy is proposed, for
example, in the PAMAS protocol [19]. For a fair comparison,
we first show data that does not consider the energy for starting
up the radio in both the baseline and our techniques. We also
show data when the start-up energy is considered.

The purposes of the simulations are: (1) to demonstrate the
energy gain achieved by EMR-Algo and DP-Algo compared
with the baseline; (2) to evaluate the impact of several key
system parameters to the performance of our algorithms; and
(3) to show the energy saving and the adaptation capability of
our on-line protocol in various run-time scenarios.

A. Simulation Setup

A sensor network was generated by randomly scattering 200
sensors in a unit square. The sink node was put at the left-
bottom corner of the square. The number of sensor nodes that
can communicate directly to a specific node is determined by
a connectivity parameter, ρ ∈ (0, 1], such that the average
number of neighbors of a sensor node is 200πρ2. We used the
so-called random sources (RS) model [3] for generating the
location of the data sources. Specifically, N (the number of
sources) sensor nodes are randomly selected to be the sources.
The Greedy Incremental Tree (GIT) algorithm [3] was used
for constructing the data aggregation tree. An example data
aggregation tree is illustrated in Figure 4 with ρ set to 0.15.

For ease of analysis, we assume that the size of raw data
generated by any source node equals 400 bits. In addition, the
aggregation factor, k, is assumed to be the same for all the
sensor nodes.
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Fig. 4. A example data aggregation tree based on the RS model (connectivity
parameter ρ = 0.15, number of sources N = 20)

The energy function used in the simulation was in the form
of equation (3). Note that τi’s are assumed to be continuous
variables except in the special case of modulation scaling,
when τi’s have discrete values determined by the modulation
level of the sensor nodes. We set Ri = 106 and Fi = 10−8

for all the sensor nodes, while the value of Ci was determined
by the distance from node Vi to its parent in the aggregation
tree. More specifically, we assume a d2 power loss model,
where d is the distance between Vi and its parent. That is
Ci = Cbase · (d

ρ )2. Based on our analysis in Section II, Cbase

was set to 7 × 10−9 for the long-range communication and
3× 10−10 for the short-range communication.

To investigate the performance of our algorithms under
various latency laxity, we use a user-specified parameter –
normalized latency constraint to adjust the tightness of the
latency constraint, Γ. Specifically, let u ∈ (0, 1] denote the
normalized latency constraint, with a higher value of u mean-
ing a tighter latency constraint, and consequently, less laxity
for exploring the energy-latency tradeoffs. We use equation
(2) to model the time cost for packet transmission, with the
highest value of bi equal to 8. The minimal time cost for data
gathering, tmin, was calculated by assuming bi = 8 for all the
sensor nodes. Then, we set Γ = tmin

u .

B. Performance of the Off-Line Algorithms

The performance metric is defined as the percentage of
energy savings achieved by using our techniques, compared
with the baseline. In the simulation, the number of sources, N ,
was varied from 10 to 30 in increments of 10. The connectivity
parameter, ρ, was varied from 0.1 to 0.3 in increments of
0.1. The aggregation factor, k, was varied from 0.3 to 1.0 in
increments of 0.35. The normalized latency constraint, u, was
varied from 0.1 to 1.0 in increments of 0.1. In addition, the
approximation accuracy, D, was set to be 50 or 100.
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For each case of the simulation, more than 100 instances
were conducted. The presented data has a 95% confidence
interval with a 5% (or better) precision. In each instance, the
source nodes were randomly selected from the sensor network
shown in Figure 4.
Performance of Our Off-Line Algorithms: Figure 5 demon-
strates the energy saving achieved by our off-line algorithms
for both long and short range communication. The investigated
algorithms include EMR-Algo, DP-Algo (with D = 100 or
50), and the special case of DP-Algo for modulation scaling
with D = 100 (denoted as MS). For MS, the available
modulation levels are even numbers between 2 and 8. Note
that the performance for MS at u = 1.0 is not shown in the
figure. This is because in this case, to round the approximated
solutions from DP-Algo leads to infeasible solutions.
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Fig. 5. Performance of our off-line algorithms (connectivity parameter ρ =
0.15, number of sources N = 20, aggregation factor k = 0.7)

The first thing to note is that up to 90% of energy saving is
achieved by all algorithms in the long-range communication
when u is small. Moreover, more than 20% energy saving is
achieved by all algorithms when u ≤ 0.9. Even when u = 1.0,
EMR-Algo and DP-Algo with D = 100 can still save more
than 30% of the energy in both communication scenarios.

The reason for successful energy saving even when u = 1 is
as follows. Intuitively, the latency constraint is determined by
the longest path in the aggregation tree. Thus, energy can be
reduced for links on paths other than the longest one by trading
the latency laxity of the paths. On one hand, when there exists
only one path in the aggregation tree, no energy can be saved
when u = 1. On the other hand, when the aggregation tree
forms a star-like structure, all links, except the longest ones,
can be optimized for saving energy even when u = 1.

The plot shows that the performance of DP-Algo improves
when D increases. When D = 100, the performance of DP-
Algo is quite close to the performance of EMR-Algo. Our
simulation results show that the DP-Algo with D = 100
achieved at least 92% of the performance of EMR-Algo in
all the simulated instances. However, the performance of MS
quickly degrades when u increases. This is because the first
derivative of the energy function tends to −∞ as τ tends to
0. Thus, the performance loss due to the rounding procedure

becomes large with solutions having high modulation levels,
which is caused by a large value of u.

It can be observed that in short-range communication,
the performance of EMR-Algo and DP-Algo becomes satu-
rated when u decreases below 0.5. This is because the non-
monotonic energy function limits the amount of latency laxity
that can be traded for energy conservation. The little perfor-
mance degradation of DP-Algo and MS when u approaches 0
is because with a fixed D, the approximation accuracy actually
decreases when the latency constraint increases. Simulation re-
sults show that such performance degradation can be overcome
by increasing D.

The simulation was performed on a SUN Blade1000 with a
750 MHz SUN UltraSPARC III processor. The running time
of EMR-Algo is between 0.1 to 2 second. The running time
of DP-Algo is around 0.003 second when D = 50 and 0.008
second when D = 100. Thus, the value of D can be used to
trade the performance of DP-Algo for the running time.
Energy Conservation vs. Various System Parameters: We
show the results of DP-Algo with D = 100 in the following
study. Figure 6 shows the energy conservation achieved by DP-
Algo with respect to variations in k and u. It was observed
that while u mainly determines the energy gain, the energy
gain of DP-Algo decreases when k decreases for a fixed u.
This is because smaller value of k causes larger size of data
packet after aggregation. Thus, the energy dissipated by links
close to the sink node dominates the overall energy dissipation
of the tree. It is however difficult to reduce the energy cost
of these links since they have high likelihood to lie on the
longest path of the aggregation tree.
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Fig. 6. Energy conservation versus normalized latency constraint and
aggregation factor k (connectivity parameter ρ = 0.15, approximation
accuracy D = 100, number of sources N = 20)

Figure 7 plots the performance of DP-Algo with respect to
variations in u and N . It can be seen that when u is large, the
energy gain of DP-Algo increases as the number of sources
increases. This is because larger number of sources facilitates
the optimization of links on paths other than the longest one.

Figure 8 demonstrates the performance of DP-Algo with
respect to variations in u and ρ. It can be observed that the
energy saving of DP-Algo increases when ρ increase. This
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Fig. 7. Energy conservation versus normalized latency constraint and number
of sources N (connectivity parameter ρ = 0.15, approximation accuracy
D = 100, aggregation factor k = 0.7)

is understandable since large ρ reduces the height of the
aggregation tree (the extreme case is a star-like aggregation
tree formed by setting ρ = 1).
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Fig. 8. Energy conservation versus normalized latency constraint and
connectivity parameter ρ (approximation accuracy D = 100, aggregation
factor k = 0.7)

Together, the above results suggest that when u is small,
DP-Algo is quite robust with respect to variations in different
system parameters, including k, ρ, and N .
Impact of Interference Avoidance: We also examined the
performance of DP-IA for the two communication scenarios
with respect to variations in u (Figure 9). It can be seen that
the performance degradation due to interference avoidance is
severe when u is large. In particular, a decrease of more than
10% in energy gain is observed for the long-range communica-
tion when u = 1. Thus, it is worthwhile to employ mechanisms
for multi-packet reception or develop more efficient algorithms
for handling interference.
Impact of the Start-up Energy: We estimate the energy for
starting up the radio as 1 µJ [7]. In each epoch, the radio
of each sensor node is started at most once. In addition,
to emphasize the impact of start-up energy, we change the
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Fig. 9. Performance of the DP-IA algorithm (connectivity parameter R =
0.15, aggregation factor k = 0.7, number of sources N = 20)

packet size to 200 bits. Figure 10 shows the performance
of EMR-Algo, DP-Algo (D = 100), and MS with start-up
energy. It can be observed that the impact of the start-up
energy to the long-range communication is almost negligible.
This is understandable since the 1 µJ start-up energy is
negligible compared with the transmitting energy of the radio.
However, the start-up energy is comparable to the transmitting
energy in the short-range communication. Thus, a decrease
around 20% in energy saving is observed for the short-range
communication.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

long−range

normalized latency constraint

en
er

gy
 c

on
se

rv
at

io
n 

(%
)

short−range

EMR−Algo
DP−Algo (D=100)
MS (D = 100)

Fig. 10. Performance of off-line algorithms with start-up energy (connectivity
parameter ρ = 0.15, aggregation factor k = 0.7, number of sources N = 20)

C. Performance of the On-Line Protocol

Energy Conservation: We show the energy conservation
achieved by the on-line protocol in Figure 11. The presented
data is averaged over more than 150 problem instances and
has a 95% confidence interval with a 5% (or better) precision.
In each instance, we generated a sensor network with 200
randomly dispersed sensor nodes. After randomly selecting
20 source nodes, the data aggregation tree was then generated
using GIT.
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Fig. 11. Performance of the on-line protocol versus normalized latency
constraint and aggregation factor k (connectivity parameter ρ = 0.15, number
of sources N = 20)

It can be seen that the energy conservation achieved by
the on-line protocol is quite close to the performance of the
off-line algorithms shown in Figure 5. There is observable
performance degradation when the normalized latency con-
straint is set to one – around 15% less energy conservation
for long-range communication and 10% less for short-range
communication. Such a performance degradation is reasonable
due to the fact that only 4 options are available to set the trans-
mission time for each sensor in the on-line protocol, instead
of the fine granularity adjustment of the transmission time
in the off-line algorithms. Surprisingly, the on-line protocol
actually outperforms the modulation scaling case (MS) shown
in Figure 5, implying a large performance degradation of the
rounding technique used by MS.
Adaptability to System Variations: Our simulations were
performed based on the aggregation tree shown in Figures 4
that has 35 sensor nodes, out of which, 20 are source nodes.
We assume that modulation scaling is used by all the nodes
with the available modulation levels being even numbers
between 2 and 8. The data gathering was requested every 2
mSec. For the sake of illustration, we set α = 4 mSec, and
β = 10.

Two run-time scenarios, namely A and B, were investigated
to demonstrate the efficiency and adaptability of our protocol.
The energy cost and latency for data gathering over 4 seconds
are depicted in Figure 12, where the optimal solutions are
obtained by using EMR-Algo.

Scenario A: We fixed s at 400 bits, while setting u to 0.7,
0.5, 0.8, 0.9, 0.8, 0.6, and 0.8 at time 0, 0.5, 1, 1.5, 2, 2.5,
and 3.5 seconds, respectively. In real life, such variations can
be caused by for example, changed user requests.

It can be observed that when u is fixed, the actual energy
cost gradually decreases till it is close to the optimal, while
the latency approaches the constraint. At time 1 second, u is
varied from 0.5 to 0.8, which causes a violation of the latency
constraint. Due to the feedback mechanism, the transmission
latency dramatically decreases as the modulation settings of all
the sensor nodes are restored to higher levels. Consequently,
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Fig. 12. Adaptability of the on-line protocol (connectivity parameter ρ =
0.15, aggregation factor k = 0.7)

the energy cost is also increased. After that, the energy cost
drops again as time advances.

Note that by setting β = 10, the modulation levels of
the sensor nodes were restored to the highest levels when a
violation is detected, reflected by the high peaks in the energy
curve at time 1, 1.5 and 3 seconds.

Scenario B: We set Γ = 0.6 mSec, while setting s to 400,
300, 200, 400, 500, 450, and 300 at time 0, 0.5, 1, 1.5, 2, 2.5,
and 3.5 seconds, respectively. In real life, the change of packet
size may be caused by variations in gathered information, or
the aggregation factor of individual sensor node. An analysis
similar to the one in scenario A can be performed.

In short, our on-line protocol is capable of saving significant
energy in the studied scenarios. It is also capable of adapting
the packet transmission time with respect to the changing
system parameters.
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VII. CONCLUDING REMARKS

In this paper, we have studied the problem of scheduling
packet transmissions over a data aggregation tree in wireless
sensor networks by exploring the energy-latency tradeoffs. For
the off-line version of the problem, we have provided (a) a
numerical algorithm for optimal solutions, and (b) a pseudo-
polynomial time approximation algorithm based on dynamic
programming. Techniques for handling interference has also
been discussed. Our simulation results show that between 20%
to 90% energy saving can be achieved by the algorithms.
We have investigated the performance of our algorithms with
different settings of several key system parameters. We have
also proposed a distributed on-line protocol that relies only on
local information of each sensor node in the aggregation tree.
Our simulation results show that the energy saving achieved
by the protocol is between 15% to 90%. Also, the ability
of the protocol to adapt the packet transmission time upon
variations in the system parameters has been demonstrated
through several run-time scenarios.

We are interested in integrating the concept of adaptive
fidelity computation [2] for aggregation and compression into
our work. The fidelity of the computation can be characterized
by the size of the output data, which affects the consequent
transmission time and energy costs. Thus, a broader tradeoff
space could be explored.
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APPENDIX I
PROOF OF THEOREM 1

We define the level of a tree as the greatest number of
edges contained by any path in the tree. We consider an OPTP
problem with a two-level aggregation tree that has exactly one
internal node with p children (see Figure 13). We call such a
problem 2-Lev-OPTP. Let Vp+1 denote the internal node, with
Vp+2 denoting its parent and C = {V1, . . . , Vp} denoting the
set of children. We assume that for any Vi ∈ C, a packet
is ready to transmission at time si and Vp+2 must received
aggregated information from Vp+1 by time t.

Vp+1

Vp+2

V1 V2 Vp

Fig. 13. A problem instance of 2-Lev-OPTP

We first show the following lemma:
Lemma 2: Let �τ∗ = {τ∗

1 , . . . , τ∗
p+1} denote an optimal

schedule to the 2-Lev-OPTP problem as defined above, then
the following hold:

1) The schedule �τ∗ is unique.
2) Let sp+1 denote the start time of packet transmission

from Vp+1 to Vp+2 in the optimal schedule, i.e., sp+1 =
maxVi∈C(si + τ∗

i ). Then sp+1 never decreases when (a)
some si’s, Vi ∈ C, increase, holding t fixed; or (b) t
increases, holding si’s fixed, for all Vi ∈ C; or (c) both
some si’s and t increase.
Let D denote the set of sensor nodes that increase their
transmission start time in cases (a) and (c). Then, in
particular, sp+1 increases in case (a) if for any Vi ∈ D,
we have sp+1 − si ≤ mi; or in case (b) we have
t − sp+1 < mp+1; or in case (c) we have either of the
previous two conditions hold.

3) sp+1 never increases when (a) some si’s, Vi ∈ C,
decrease, holding t fixed; or (b) t decreases, holding si’s
fixed, for all Vi ∈ C; or (c) both some si’s and t decrease.
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Let D′ denote the set of sensor nodes that decrease their
transmission start time in cases (a) and (c). Then, in
particular, sp+1 decreases in case (a) if for any Vi ∈ D′,
we have sp+1 − si < mi; or in case (b) we have
t − sp+1 ≤ mp+1; or in case (c) we have either of the
previous two conditions hold.

Due to space limitations, the proof of Lemma 2 is omitted
in this paper. Details of the proof can be found in [17].

Now we prove Theorem 1.
Proof:

1) Recall that EMR-Algo works in iterations: for each
iteration k, the algorithm determines sk

i by decreasing
i from n− 1 to M + 1. Since the EMR-Algo initializes
si = 0 for i = 1, . . . , n − 1, it follows that s0

i ≤ s1
i for

each i = 1, . . . , n−1. Suppose that i′ > 1 and k′ > 1 are
the first time that there is a violation; that is, sk′

i′ > sk′+1
i′ .

We consider the 2-level aggregation tree formed by Vi′

together with its parent, denoted as Vp, and its children,
denoted as set C. We have sk′

p ≤ sk′+1
p , and sk′−1

i ≤ sk′
i ,

for each Vi ∈ C.
From line 8 in EMR-Algo, sk′

p and sk′−1
i ’s actually give

the boundaries within which EMR-Algo determines sk′
i′ .

Similarly, sk′+1
p and sk′

i ’s give the boundaries within
which EMR-Algo determines sk′+1

i′ . From part (2) of
Lemma 2, we have sk′

i′ ≤ sk′+1
i′ . This contradicts the

assumption sk′
i′ > sk′+1

i′ and hence property (1) holds.
2) It is obvious that s0

i ≤ s∗i , for each i = 1, . . . , n − 1.
Similar to the proof for property (1), suppose that i′ ≥ 1
and k′ ≥ 1 are the first time that there is a violation; that
is, sk′

i′ > s∗i′ .
Again, we consider the 2-level aggregation tree formed
by Vi′ together with its parent, denoted as Vp, and its
children, denoted as set C. We have sk′

p ≤ s∗p, and
sk′−1

i ≤ s∗i , for each Vi ∈ C. We know that sk′
p and

sk′−1
i ’s actually give the boundaries within which EMR-

Algo determines sk′
i′ . Similarly, s∗p and s∗i ’s give the

boundaries within which EMR-Algo determines s∗i′ . Part
(2) of Lemma 2 again leads to the contradiction that
sk′

i′ ≤ s∗i′ and proves property (2).
3) We prove by contradiction and hence assume that j =

max{i : s∞i < s∗i }. Let Vp denote the parent of Vj and Vg

denote the parent of Vp. We have s∞p = s∗p and s∞g = s∗g .
Since τ∗

j is optimal, we have τ∗
j ≤ mj . We consider two

cases:
Case (i): We suppose that τ∗

j < mj . Considering the
2-level tree formed by Vp, Vg and the children of Vp,
denoted as C, we have s∞j < s∗j and s∞i ≤ s∗i , for each
Vi ∈ C ∧ i �= j. Suppose that we run EMR-Algo for one
more pass and let ŝp denote the resulting start time for the
transmission from Vp to Vg . From part (3) of Lemma 2,
we have s∞p − (s∗j − s∞j ) < ŝp < s∞p = s∗p, contradicting
both property (1) for Vp and the definition of j.
Case (ii): We assume that τ∗

j = mj . From part (1) of
Corollary 1, we have τ∗

i = mi for any Vi ∈ Tj . Moreover,
we have s∞p − s∞j > s∗p − s∗j = τ∗

j = mj . Since EMR-
Algo maintains the invariant that τk

i ≤ mi for all Vi ∈ V ,
we have τ∞

j = mj . Again from part (1) of Corollary 1,

we have τ∞
i = mi for any Vi ∈ Tj . Based on the

definition of s∞j and s∗j , we obtain the contradiction that
s∞j = s∗j .

APPENDIX II
JUSTIFICATION OF THE HYPOTHESIS FOR DP-IA

The DP-IA algorithm is designed based on the hypothesis
that any group of interfering sensor nodes are children of the
same node. Such a hypothesis can be satisfied by carefully
constructing the aggregation tree as follows.

We consider possible scenarios for interference between
sensor nodes that are not children of the same node. First we
consider packet transmission along each path – the packets
must be transmitted by following the topological order of
sensor nodes along the path. Therefore, no interference could
happen between sensor nodes on the same path.

Now we examine the case when sensor nodes from two
different paths interfere with each other. Let p1 and p2 denote
the two paths and let Va ∈ p1 and Vb ∈ p2 denote the
two interfering sensor nodes. More precisely, let Vc denote
the parent of Va and Vd denote the parent of Vb (shown
in Figure 14 (a)). Let d(Vi, Vj) denote the physical distance
between sensor nodes Vi and Vj . Without loss of generality, we
say that Vb interferes Va if d(Vb, Vc) ≤ d(Vb, Vd). Intuitively,
it implies that Vc is within the communication range of both
Va and Vb. Hence, packets simultaneously transmitted from
Va and Vb may collide at Vc.

communication
radius

Va VbVc

(a) before transform (b) after transform

Vd

Va VbVc

Vd

Vn Vn

V1

V2

V1

V2

Fig. 14. A example for transforming the data aggregation tree

We use a simple transform procedure to re-construct the
aggregation tree. The key idea is to group interfering sensor
nodes to be the children of the same sensor node. Specifically,
we make Vb also a child of Vc and break the links from Vb

to its ancestors until an ancestor that performs local sensing
is reached. The aggregation tree after the transformation is
illustrated in Figure 14 (b).

It can be shown that by applying the above transform
procedure for each pair of interfering sensor nodes from two
different paths as previously defined, we obtain an aggregation
tree such that any group of interfering sensor nodes are
children of the same sensor node.
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