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Abstract

Molecular Communication (MC) is a promising bio-inspired paradigm, in which molecules are used

to encode, transmit and receive information at the nanoscale. Very limited research has addressed the

problem of modeling and analyzing the MC in nanonetworks. One of the main challenges in MC is the

proper study and characterization of the noise sources. Theobjective of this paper is the analysis of the

noise sources in diffusion-based MC using tools from signalprocessing, statistics and communication

engineering. The reference diffusion-based MC system for this analysis is the physical end-to-end model

introduced in a previous work by the same authors. The particle sampling noise and the particle counting

noise are analyzed as the most relevant diffusion-based noise sources. The analysis of each noise source

results in two types of models, namely, the physical model and the stochastic model. The physical model

mathematically expresses the processes underlying the physics of the noise source. The stochastic model

captures the noise source behavior through statistical parameters. The physical model results in block

schemes, while the stochastic model results in the characterization of the noises using random processes.

Simulations are conducted to evaluate the capability of thestochastic model to express the diffusion-based

noise sources represented by the physical model.

Index Terms

Molecular Communication, Molecule Counting Noise, Nanonetworks, Nanotechnology, Particle Dif-

fusion, Poisson Noise
I. INTRODUCTION

Nanotechnology is nowadays one of the most promising emerging research fields, enabling devices

manufactured in a scale ranging from one to a hundred nanometers. At this scale, a nanomachine is

considered to be the most basic structural and functional device, consisting of nanoscale components,

and able to perform tasks at the nano-level, such as computing, data storing, sensing or actuation.

Nanomachines can be interconnected as a network, or nanonetwork [1], to execute more complex tasks
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and to expand their range of operation. The characterization of communication mechanisms between

nanomachines, the definition of channel models and the development of architectures and protocols for

nanonetworks are new challenges that need to be addressed inthe research world.

Molecular Communication (MC) is a promising paradigm for communication in nanonetworks. Unlike

classical communication techniques, we believe that the integration process of molecular transceivers in

nanomachines is more feasible due to their size and natural domain. MC follows a bio-inspired approach,

in which molecules are used to encode, transmit and receive information at the nanoscale. Several

techniques to propagate information molecules have been proposed so far [2], ranging from molecular

motors [3], to bacteria [4] or free diffusion [5]. We focus onthe diffusion-based architecture, as it

represents the most general and widespread MC architecturefound in nature. Pheromonal communication,

when pheromones are released into a fluidic medium [6], such as air or water, is an example of diffusion-

based architecture. Another example is calcium signaling among cells [7]. Different mathematical models

have been formulated for the diffusion of molecules in a fluid. As an example, the theory of turbulent

diffusion [8] can be applied to the diffusion of pheromones,while the theory of electro-diffusion [9] is

applicable to the diffusion of calcium ions in calcium signaling. The most general model of molecular

diffusion in fluids, which underlies all the other models, isbased on the Fick’s diffusion theory [10,11].

In this paper, we consider only Fick’s diffusion in order to maintain the maximum possible generality

for our diffusion-based molecular communication system. Further specifications of the system for the

pheromonal communication case or the calcium signaling case stem from the general case treated in this

work.

Up to date, very limited research has addressed the problem of the analytical modeling of diffusion-

based MC from an information theoretical point of view. While in [12] some open questions about

nanoscale information theory are outlined, concrete mathematical solutions for specific diffusion-based

MC architectures are not provided. Two main different diffusion-based MC architectures have been

studied by the research community under an information theoretical point of view, on the basis on how

information is encoded in the diffusing molecules. In [13] the information is encoded in the time of

release of each molecule in the diffusion channel, while in [14]–[17], the information is encoded into

variations in the concentration of molecules in the space. The first type of architecture is theoretically

analyzed in [13], where the authors focused on the mathematical modeling of the diffusion channel as

a probabilistic contribution in the time of arrival of molecules at the receiver. The model of this system

is focused on the diffusion channel, while the transmitter is an ideal emitter of one or more molecules

at precise time instants, and the receiver ideally computesthe molecule time of arrival at its location.

Moreover, a drift velocity is added on top of the diffusion process. The results of simulations from [13]

in terms of achievable information rate show that, due to thehigh uncertainty in the propagation time,
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this architecture is characterized by very low capacity. The work in [14,15] is focused on developing an

MC receiver model based on molecule concentration encoding, while the transmitter and the diffusion-

based propagation theory are not taken into account. In [16]a simplified receiver model that receives

one molecule at a time is coupled with a diffusion-based channel model, while the transmitter is an ideal

molecule rate emitter. In [17], a physical model of the diffusion-based MC is developed in terms of

end-to-end information delivery at the nanoscale and models are provided for the transmitter, the channel

and the receiver. A third possible diffusion-based MC architecture is proposed and analyzed in [18],

where information is encoded in each single molecule and only the diffusion channel part is modeled,

together with other types of channels. As a consequence, theinformation carried by a certain molecule

is received only if that molecule reaches the receiver location.

The proper study and characterization of the noise is one of the main challenges in the information

theoretical analysis of diffusion-based MC. Most of the works from the literature do not provide stochastic

models for the noise sources in terms of random processes. The results of these works are expressed in

terms of system capacity computed on numerical results fromlarge sets of simulations. A non-Gaussian

noise is observed through numerical results from simulations of the system proposed in [16], even if

it is not analytically modeled with a closed-form expression of a random process. Also in [18], the

noise effects on the diffusion-based MC are resulting only from simulations and there is no analytical

model of diffusion-based noise and no stochastic study of its underlying physical phenomena. In [19],

the noise analysis stems from a formulation of the ligand-receptor reaction kinetics at the receiver side,

without accounting for diffusion. A numerical evaluation of the system capacity is here provided in terms

of probability of having erroneous digital reception, but only under the assumption of a binary squared

pulse code modulation signal. In [13], a mathematical equation for finding the system capacity is provided

and it is evaluated with numerical methods.

In this paper, we aim at the analysis of the most relevant diffusion-based noise sources affecting MC.

We use tools from signal processing, statistics and communication engineering, with the aim to obtain

stochastic models of the sources in terms of random processes. The reference diffusion-based MC system

for this analysis is the physical end-to-end model introduced in [17].

Contributions from the biochemistry literature provide descriptions of some physical processes under-

lying the noise sources in diffusion-based MC systems. Seminal works in biochemistry, such as [20],

analyzed how free space diffusion of molecules impairs the proper measurement of the molecule con-

centration. A more recent contribution to the physical analysis of molecule diffusion and reception in

biochemical signaling can be found in [21]. However, these contributions tend to focus on the explanation

of natural phenomena and do not provide suitable models for MC engineering. The work in [22] stems,

on the contrary, from the simulation of a biological signal transduction mechanism and its associated
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noise using tools from communication engineering. However, the analysis of the system is limited to

a numerical evaluation of the simulation results using communication engineering parameters (e.g., the

Signal to Noise Ratio). No stochastic models are provided in[22] for the noise sources, but the results are

coming from numerical simulations. In [23], the authors develop only a preliminary information theoretic

model applied to the study of intracellular communication with the diffusion of calcium ions.

The noise sources considered in this paper are modeled in a twofold fashion: the physical model

provides a mathematical analysis of the physical processeswhich generate the noise, while the stochastic

model aims at capturing those physical processes through statistical parameters. The physical model

contains all the physical variables which contribute to thegeneration of the noise. The stochastic model

summarizes the noise generation using random processes andtheir associated parameters. While the

physical model provides a means to simulate the generation of noise in MC, the random nature of the

diffusion processes does not allow for a deterministic knowledge of the noise signal. Noise impairments

on MC can be studied only statistically through the parameters of the stochastic model. Sets of noise

data realizations are generated through simulation of the physical model. The sets of noise data are then

used to test the stochastic model ability to capture the behavior of the physical processes which generate

the noise.

The remainder of the paper is organized as follows. In Sec. II, some assumptions for the proposed

noise analysis are introduced, and the diffusion-based noise sources are briefly defined with reference to

the end-to-end model from [17]. The first noise source, namely, the particle sampling noise, is analyzed in

Sec. III, whereas the second noise source, namely, the particle counting noise, is treated in Sec. IV. The

physical models for the two noise sources are introduced in Sec. III-A and Sec. IV-A, while the stochastic

models are outlined in Sec. III-B and Sec. IV-B, respectively. Simulations are provided in Sec. V for each

noise source with the objective to test the stochastic modelability to capture the behavior of the physical

models. Finally, in Sec. VI, we conclude the paper and present some future open research problems.

II. T HE DIFFUSION-BASED NOISE IN THE END-TO-END MODEL

The end-to-end (including channel) model from [17] describes the diffusion-based MC in terms of

transmission, propagation and reception of particles, as sketched in Fig. 1. The three-dimensional space

S is here indexed through the Cartesian axes X, Y and Z. The transmitter is placed at the axes origin. The

emission process modulates the particle concentration rate at the transmitter according to an input signal.

The modulation is achieved through the release/capture of particles into/from the emission gaps. The

modulated particle concentration rate is the output of the transmitter and the input of the propagation.

The propagation relies on the diffusion process of the particles in the space S to output the particle

concentration at the receiver. The receiver senses the variations in the particle concentration at its location

as input and it recovers the output signal. The reception process generates the output signal by means of
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Fig. 1. Graphical representation of the end-to-end model.

chemical receptors. A mathematical analysis of the communication channel of Fig. 1 is provided in [17]

by comparing the input and the output signals. The normalized gain and delay between inputs and

outputs are computed as functions of the frequency and the transmission range for the three underlying

physical processes, namely, the particle emission, diffusion and reception, as well as for the overall end-

to-end model. However, the analysis from [17] does not account for diffusion-based noise effects on the

information signal as it propagates through the end-to-endmodel. In this paper, we complete the model

introduced in [17] by providing an analysis of the possible diffusion-based noise sources.

The analysis of the diffusion-based noise sources stems from the assumptions defined for the end-to-end

model in [17]:

• All the processes take place inside the spaceS, with reference to Fig. 1, which contains a fluidic

medium and it has infinite extent in all three dimensions.

• A particle is an indivisible object that can be released into, or collected from, the spaceS.

• When a particle is not being released or collected, it is subject to the diffusion process in the fluidic

medium contained in the spaceS.

• The shape, size and mass of a particle are considered negligible.

Two type of noises are identified and studied in this paper, namely, the particle sampling noise and

the particle counting noise. The particle sampling noise and the particle counting noise are analyzed as

the most relevant diffusion-based noise sources affectingthe physical end-to-end model in Sec. III and

Sec. IV, respectively. In the following, we define each noisesource with reference to the block scheme

in Fig. 2.

The PARTICLE SAMPLING is related to theEmission Process at the transmitter. During the emission

process, particles are emitted from the particle transmitter according to the input signalT (t), which
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Fig. 2. Block scheme of the end-to-end model and the diffusion-based noise sources.

modulates the particle concentration raterT (t) at the transmitter location:

T (t) → rT (t) (1)

According to the transmitter model in [17], the modulation of the particle concentration rate does not

follow any specific digital modulation scheme. The signalT (t) can be in general any continuous function

of the timet and the modulated particle concentration raterT (t), output of the transmitter, is a function of

T (t). The particle sampling noise is expressed asns(t). The effect ofns(t) is an unwanted perturbation

on the output of the emission processrT (t), which results inr̂T (t):

rT (t) → r̂T (t) (2)

The particle sampling noise is generated by the PARTICLE SAMPLING, which occurs when the particle

concentration ratêrT (t) is being modulated through the emission of the particles. The noise effects arise

from the discreteness of the particles that compose the particle concentration ratêrT (t). The particle

concentration raterT (t) in output from the emission process is caused by a particle flux between the

transmitter and the external space. Given the discretenessof the particles, the particle concentration rate

rT (t) is sampled by the particles themselves, resulting in the particle concentration ratêrT (t). Further

details on the analysis for this type of noise are provided inSec. III.

The PARTICLE COUNTING is related to the signal propagation due to theDiffusion Process. The

signal contained in the particle concentration rater̂T (t) propagates due to the particle diffusion from

the transmitter location to the receiver location. The particle concentration valuecR(t), a measure of the

particle concentration at the receiver location, is the output of the diffusion process:

r̂T (t) → cR(t) (3)

According to the signal propagation model in [17], the modulated particle concentration rater̂T (t) creates

differences in particle concentration across the spaceS. These differences cause a non-homogeneous

particle concentration inside the spaceS which, due to the particle diffusion, causes variations in the

particle concentrationcR(t) at the receiver location. The particle counting noise is expressed asnc(t).

The effect ofnc(t) is an unwanted perturbation on the output of the diffusion processcR(t), which results

in ĉR(t):

cR(t) → ĉR(t) (4)

The particle counting noise occurs when the particle concentration value is being measured at the
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receiver location (PARTICLE COUNTING) and it is due to the randomness in the movement and to

the discreteness of the particles. The particle concentration cR(t) at the receiver location is computed

by counting the number of particles present in the receptionspace. Fluctuations and imprecisions in

counting the particles impair the proper computation of theconcentrationcR(t). The actual computed

concentration̂cR(t) differs from cR(t). The analysis for this type of noise is provided in Sec. IV.

During theReception Process, the particle concentration̂cR(t) at the receiver location is sensed by

means of chemical receptors and an output signalR(t) is generated accordingly:

ĉR(t) → R(t) (5)

According to the analysis presented in this paper, the particle reception process at the receiver is not

associated to diffusion-based noise sources. Other types of physical phenomena, which stem from the

ligand-receptor kinetics of the chemical receptors, contribute as noise at the receiver. Due to the complexity

of these phenomena and to their heterogeneity with respect to the present work, a thorough analysis of

the noise sources in the reception process will be presentedin a separate future work.

The analysis of the noise sources results both inphysical modelsand stochastic models. With the

former we aim at the mathematical expression of the physicalprocesses underlying the noise sources

(Sec. III-A and Sec. IV-A), while with the latter we model thenoise source behaviors through the use

of statistical parameters (Sec. III-B and Sec. IV-B).

The physical models are expressed through the block schemesin Fig. 4(a) and Fig. 7(a), which expand

in detail the blocksns(t) andnc(t) from Fig. 2, respectively. The particle sampling noise physical model

is further detailed through (9), (10), (12), (13), (15) and (16), while the particle sampling noise physical

model is detailed in (34), (35), (37), (38), (39), (40), (41)and (42).

The stochastic models are analyzed in terms of random processes, such as in (22) and (49), and their

effects on the end-to-end model are expressed in terms of Root Mean Square (RMS) perturbatioñnX(t)

of the noise on the signal, as in (31) and (65). The RMS of the perturbationRMS(ñX(t)) on the signal

s(t) (which is rT (t) or cR(t), respectively) corresponds to the square root of the average of the squared

noise process̃n2
X(t):

RMS(ñX(t)) =
√

〈ñ2
X(t)〉 (6)

whereX corresponds tos or c, respectively, and〈.〉 denotes the ensemble average operator. The stochastic

noise modeling for the aforementioned noise sources is therefore focused on the proper determination

of the statistical parameters of their perturbations in relation to the processes expressed by the physical

models.
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(a) Graphical sketch of the emission process. (b) Graphical sketch of the PARTICLE SAMPLING:

emission process and particle sampling noise contri-

bution.
Fig. 3.

III. T HE PARTICLE SAMPLING NOISE

A. The Physical Model

The particle sampling noise affects the physical end-to-end model from [17] at the transmitter. When

a signalT (t) has to be delivered through the physical end-to-end model, the transmitter modulates the

particle concentration raterT (t) at the transmitter location according to the value ofT (t) itself. The

modulation of the particle concentration rate is achieved by means of the particle emission process,

sketched in Fig. 3(a), which is based on the following assumptions:

• The transmitter has aspherical boundarythat divides the space in proximity of the transmitter into

two areas: the inner area and the outer area.

• The inner concentrationcinT (t) is the concentration of particles lying in the inner area, whereas the

outer concentrationcT (t) is the concentration of particles lying in the outer area.

• The inner area and the outer area are spatially connected by means ofemission gaps. An emission

gap is an opening in the spherical boundary which allows particles to move through due to their

diffusion. The size of an emission gap allows only one particle to pass through at each time instant.

Whenever a particle is traversing the emission gap, its movement has only components along the

radius of the spherical boundary. As a consequence, the movement of a particle through the emission

gap can only be outward (from the inner area to the outer area)or inward (from the outer area to

the inner area). The emission gaps are many and homogeneously distributed on the surface of the

spherical boundary. The present noise analysis does not depend on their precise number. We believe

it will be important to discuss the impact of the number of emission gaps on the end-to-end model

in our future work.

• Whenever there is a difference between the inner concentration cinT (t) and the outer concentration

cT (t), a movement of particles is stimulated between the inner area and the outer area through the

emission gaps.
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• The movement of particles between the inner area and the outer area causes a variation in the outer

concentration, whose first time derivative is the particle concentration rate at the transmitter location

rT (t).

• Particles can be created/destroyed in the inner area in order to reach a desired inner concen-

tration cinT (t), with reference to the model of the particle emission process from [17]. The cre-

ation/destruction of particles in the inner area is supposed to be ideally perfect and instantaneous.

As a consequence, we do not account for the randomness that can derive from the creation/destruction

of particles. We believe that this is a reasonable approximation that allows us to analyze the

noise contributions coming only from the emission process.Further analysis can be conducted

by specifying the processes involved in the creation/destruction of particles. As an example, the

creation/destruction of particles could be realized through a cascade of chemical reactions or by the

emptying/filling of particle reservoirs located in the inner area.

• The transmitter is supposed to be able to adjust the inner concentrationcinT (t) in order to obtain a

particle concentration raterT (t) proportional to the signalT (t) (modulation ofrT (t) according to

T (t)).

Those assumptions are inspired by biochemistry principlesrelated to the living cells and to the

mechanisms in cell biosignaling [24]. According to this, the spherical boundary is a simplification of the

cell plasma membrane, which separates the interior of a cellfrom the outside environment. The emission

gaps are inspired by the channels that permit the selective passage of molecules through the plasma

membrane of a cell. As an example, the gated ion channels in the plasma membrane are openings that

allow the passage of specific ion molecules between the interior of a cell and the outside environment

and, amongst others, they serve for cell-to-cell communication purposes. As stated in [24], those ion

molecules, while traversing the gated ion channels, are driven by a force that is a sum of two terms. The

first term of the force is a function of the difference betweenthe inside and the outside concentration

of the same molecules and it depends on the diffusion. The second term of the force is a function of

an electrical potential and it is related to the electrostatic charge carried by the ion molecules. Since,

according to our assumption, the particles in our system do not carry any electrostatic charge, when they

traverse an emission gap they are driven only by the first termof the force. For this, the difference in

the concentration of particles between the inner area and the outer area stimulates the driving force that

permits their movement through the emission gaps either outward or inward, as explained above.

The model of the emission process provided in [17] does not take into account the discrete nature of

the particles when there is a flux between the inner area and the outer area of the spherical boundary.

As a consequence, the relation between the input signalT (t) and the resulting particle concentration rate
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rT (t) is a continuous function:

rT (t) = fe (T (t)) (7)

where fe expresses the Emission Process block shown in Fig. 2. We havethe additional following

assumption for the particle emission process:

• The particle flux between the inner area and the outer area of the spherical boundary is composed

of discrete particles.

As a result, the relation between the input signalT (t) and the resulting particle concentration rate, denoted

by r̂T (t), is no longer a continuous function. The overall process that takes the input signalT (t) as input

and returnŝrT (t) as output is called PARTICLE SAMPLING and it is graphically sketched in Fig. 3(b).

The PARTICLE SAMPLING is composed of the Emission Process block and the particle sampling noise

blockns(t), as shown in Fig. 2. During the PARTICLE SAMPLING, single particles flowing between the

inner area and the outer area contribute to the concentration rate r̂T (t) with a valuekn at discrete time

instantstn = t1, t2, . . .. These discrete time instants are not equally spaced, due tothe random nature

of the particle movements between the inner area and the outer area. As a consequence, the resulting

particle concentration ratêrT (t) is non-uniformly sampled at randomly spaced time instantstn, where it

assumes values equal tokn, and it is zero for any other time instant:

r̂T (t) =
∑

nǫN

kn
tn − tn−1

δ(t− tn) (8)

whereδ(.) is a Dirac delta function. According to the Nyquist theorem [25], since the time instantstn

are randomly spaced, the continuous particle concentration raterT (t) can be reconstructed from the non-

uniform sampled particle concentration rater̂T (t) if the bandwidth ofrT (t) is limited up to frequency

1/(2〈tn−tn−1〉), where〈tn−tn−1〉 is the average interval between two consecutive samples ofr̂T (t). As

a consequence, given a fixed bandwidth for the system, the degradation caused by the particle sampling

noise on the particle concentration rate in output at the transmitter depends on the average rate of the

events of single particles flowing between the inner area andthe outer area. This event rate corresponds

to the particle concentration raterT (t) and the system bandwidth depends on the parameters defined

in [17]. This result is confirmed through the stochastic model of the particle sampling noise, outlined in

Sec. III-B.

The PARTICLE SAMPLING physical model is represented thoughthe block scheme shown in Fig. 4(a).

The signalT (t) is the input of the Emission Process block, whose output is the particle concentration rate

rT (t). The physical model of the particle sampling noisens(t) takes as input the particle concentration

rate rT (t) that the emission process would produce in output in the absence of noise. The particle

sampling noisens(t) is composed of a decision block and a non-uniform sampler, which have as input

the transmitter kinetic statēST (t), and a divisor. The output of the particle sampling noisens(t) is the

February 4, 2011 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. XX, 2011 11

(a) Block scheme of the particle sampling noise

physical model whentn−1 < t < tn+1.

(b) Graphical sketch of the transmitter kinetic state

S̄T (t) at time t. S̄T (t) depends on the particle con-

centration raterT (t) in input through the expressions

in (9) and (10).
Fig. 4.

particle concentration rate affected by noise, namely,r̂T (t).

Thetransmitter kinetic state S̄T (t), as shown in Fig. 4(b), is a set composed by the locationx̄p(t) and

the net velocityv̄p(t) of each particlep at time t present in the surrounding of the transmitter spherical

boundary:

S̄T (t) = {x̄p(t), v̄p(t)| p = 1, ..., P (t)} (9)

whereP (t) is the number of particles in the system and varies as a function of the timet. The net velocity

v̄p(t) is here defined as the non-isotropic component of a particle speed, in contrast to the Brownian motion

in free space which has isotropic components. In order to realistically simulate the transmitter kinetic

stateS̄T (t), we consider two different contributions to the particle displacement, namely, the Brownian

motion and the time integral of the particle net velocity from time instantt0 to time instantt. The time

instantt0 corresponds to the beginning of the emission process. The expression of the particle location

x̄p(t) is written as follows:

x̄p(t) = bx(t) î+ by(t) ĵ + bz(t) k̂ +

∫ t

t′=t0

v̄p(t
′)dt′ (10)

where the Brownian motion components, namely,bx(t), by(t) and bz(t), are random variables with

normal distribution, zero mean value and variance equal to2Dδt, according to the expression of the

Wiener process [26]:

bx(t), by(t), bz(t) ∼ N (0, 2Dδt) (11)

along the versors of the cartesian axes, namely,î, ĵ and k̂. D is the diffusion coefficient andδt is the

simulation time step and it depends on how the transmitter kinetic state is sampled during the physical

model simulation. The smaller is the time stepδt, the closer is the simulation to the real physical

phenomenon of particle diffusion. The value of the time stepδt defines the time resolution with which

we model events concerning particles changing their space area. According to the Nyquist theorem [25],
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if the value of the time stepδt is smaller than1/(2BrT ), whereBrT is the bandwidth of the particle

concentration raterT (t), then we can have a perfect simulation of the sampling noise generation as it

happens in reality. When the particle is located inside the inner area or the outer area, it is only subject

to the Brownian motion. In these cases, the particle speed has only the isotropic components due to the

Brownian motion in free space, and its net velocityv̄p(t) is equal to zero. When the particle is traversing

an emission gap, its movement can only be outward incase of positive rate (rT (t) > 0) or inward in case

of negative rate (rT (t) < 0) along the radius of the spherical boundary. In order to quantify the particle

net velocityv̄p(t), we consider that the particle concentration raterT (t) is given only by the contribution

of the particles traversing the emission gaps. Given a particle concentration raterT (t), the number of

particles traversing the emission gaps in a unit time is given by the transmitter inner concentrationcinT (t)

in case of positive rate (rT (t) > 0) and by the transmitter outer concentrationcT (t) in case of negative

rate (rT (t) < 0), multiplied by their average velocity. When they traversethe emission gap, the particle

average velocity corresponds to the net velocityv̄p(t). As a consequence, the particle net velocityv̄p(t) is

proportional to the particle concentration raterT (t), divided by the transmitter inner concentrationcinT (t)

in case of positive rate (rT (t) > 0), or divided by the transmitter outer concentrationcT (t) in case of

negative rate (rT (t) < 0):

v̄p(t) =







0 if p in inner or outer

rT (t)
cin
T
(t)1rT (t)>0+cT (t)1rT (t)<0

γ̂ if p in emission gap
(12)

where1(condition) is equal to1 whencondition is true and0 otherwise.̂γ is the versor along the radius

of the transmitter spherical boundary.

The decision block assigns the value ofkn according to the transmitter kinetic statēST (t). kn is

assigned a positivek value or a negative−k value according whether there is an event in the kinetic

stateS̄T (t) concerning a particle changing its space area, e.g., from the inner to the outer area, with

contributionk to the rate, or from the outer to the inner area, with contribution −k:

kn =







k if S̄T (t) ⊂ {x̄p(t), v̄p(t)|p from inner to outer}
−k if S̄T (t) ⊂ {x̄p(t), v̄p(t)|p fromouter to inner}

(13)

The value of k equals a contribution of one particle to the concentration at the transmitter location or,

in other words, it is the constant difference in the particleconcentration̂cT (t) from consecutive time

instantstn, tn−1:

k = ĉT (tn)− ĉT (tn−1) (14)

The non-uniform sampler block samples at time instantstn, which are functions of the transmitter

kinetic stateS̄T (t). If, at time instanttn, there is an event in the kinetic stateS̄T (tn) concerning a particle

changing its space area, the non-uniform sampler block produces a Dirac impulse attn, with amplitude
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equal to the current value ofkn, output from the decision block:

knδ(t− tn)if S̄T (tn) ⊂ {x̄p(tn), v̄p(tn)|p changes space area} (15)

The divisor block divides the output of the sampler by the time interval between the previous sample

at tn−1 and the current sample, which is attn. As a consequence, the output of the divisor block for the

time interval tn−1 < t < tn+1, which corresponds to the particle concentration rater̂T (t) affected by

noise, is:

r̂T (t) =
knδ(t− tn)

tn − tn−1
for tn−1 < t < tn+1 (16)

For a time interval spanning fromt = 0 to t → ∞ the result is the expression introduced in (8).

Since it is not possible to always have the knowledge of the kinetic state of the system̄ST (t) due to

the huge amount of information and to the randomness in the particle motion, we cannot analytically

compute the value of̂rT (t) as function ofrT (t) from the physical model of the particle sampling noise.

Using the physical model provided here, we can only simulatenumerically the behavior of the particle

sampling noisens(t).

B. The Stochastic Model

The particle sampling noise can also have another formulation, through statistical parameters, which

is suitable when theoretical studies require an analyticalexpression of the noise. For this, the particle

sampling noisens(t) is generated by a random processñs(t), whose contribution corresponds to the

difference between the particle concentration rater̂T (t) affected by noise and the expected particle

concentration rate〈r̂T (t)〉, where〈.〉 denotes the ensemble average operator:

ñs(t) = r̂T (t)− 〈r̂T (t)〉 (17)

The expected particle concentration rate〈r̂T (t)〉 corresponds to the time-continuous particle concentration

rate that we would expect in the absence of the particle sampling noise:

〈r̂T (t)〉 = rT (t) (18)

In other words,̃ns(t) is an unwanted perturbation on the particle concentration rate around its expected

valuerT (t) due to the particle sampling noise. In Fig. 5 we show the main block scheme of PARTICLE

SAMPLING when the stochastic model is applied for the particle sampling noise. The random process

ñs(t), as it is proved in the following, depends on the value of the particle concentration raterT (t),

output from the Emission Process block which receives the signal to be transmittedT (t) as input. The

sum of the random process̃ns(t) and the particle concentration raterT (t) is the particle concentration

rate affected by the particle sampling noise, namely,r̂T (t).

In order to properly model the random processñs(t) we consider the following assumptions:
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Fig. 5. Block scheme of the particle sampling noise stochastic model.

• The outer particle concentration at the transmitterĉT (t) increments/decrements its value whenever

a single event concerning a particle changing its space areaoccurs.

• The probability of having two simultaneous events concerning particles changing their space area

is zero. In other words, it is unlikely to have two particles crossing the spherical boundary of the

transmitter at the same exact time instant. With reference to the physical model of the particle

sampling noise from Sec. III-A, this assumption translatesinto the statement: the probability of

having two samples from the non-homogeneous sampler at the same time instant is zero. In equation

it becomes:

Pr [tn − tn−1 = 0] = 0 (19)

This assumption is justified by the independency of the Brownian components in the movement of

different particles in the space. This assumption directlytranslates into the property of orderliness

for the outer particle concentrationcT (t) increments/decrements. The property of orderliness states

that the probability that the difference between outer particle concentrations∆ time apart from each

other is higher than the contributionk from a single particle, tends to zero as∆ tends to zero:

lim
∆→0

Pr [|cT (t+∆)− cT (t)| > k] = 0 (20)

wherek is defined through (14).

• An event concerning a particle changing its space area (passing through an emission gap) occurring

after timet is independent of any event of the same kind occurring beforetime t. This assumption

is justified by the property of the Wiener process underlyingthe particle Brownian motion of having

independent increments. As stated in Sec. III, particles are subject only to the contribution of the

Brownian motion when they are located inside the inner area or the outer area. An event concerning

a particle passing through an emission gap takes place whenever a particle, due to the Brownian

motion, reaches the location of an emission gap: if there is anon-zero particle concentration rate

in the outer area, the particle traverses the emission gap with net velocity v̄p(t), given by (12).

In other words, given a particle concentration rate in the outer area, which controls the average

rate of occurrence of an event of this kind, the statistics ofthe event is solely dependent on the

Brownian motion of the particles. As a consequence, the distribution of the time interval between
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an event at timet−∆t and another event at timet is independent from the distribution of the time

interval between an event at timet and an event at timet+∆t. The two distributions have the same

expression from (11):

Pr (bx(t)− bx(t−∆t) = x) = 1√
2πD∆t

e−
x
2

2D∆t =

= Pr (bx(t+∆t)− bx(t) = x)
(21)

where bx(t) is the motion component along thêi versor at timet, D is the diffusion coefficient

and ∆t is positive. Equation (21) is valid also for the motion componentsby(t) and bz(t) along

the versorŝj and k̂, respectively. This implies that a particle motion from time t is independent

from any motion of the particle occurred before timet. Being all the particle independent among

each other, events concerning a change in the particle spacearea show the same independence.

As a consequence, the events concerning particles changingtheir space area have the property of

memorylessness.

• The occurrence rate of events concerning particles changing their space area is proportional to the

flux of the particles between the inner area and the outer area. The flux of the particles is proportional

to the expected particle concentration rate at the transmitter locationrT (t).

Under these assumptions [26], the resulting outer particleconcentration at the transmitter̂cT (t) is a

double non-homogeneous Poisson counting process, whose rate of occurrence corresponds to the expected

particle concentration raterT (t). The distribution of the outer particle concentrationĉT (t) corresponds to

a Poisson counting process with rate of occurrencerT (t) whenever the particle concentration raterT (t)

is positive. Whenever the particle concentration raterT (t) is negative,̂cT (t) is the negative of a poisson

counting process with rate of occurrence−rT (t):

ĉT (t) ∼







Poiss(rT (t)) rT (t) > 0

−Poiss(−rT (t)) rT (t) < 0
(22)

When the emission process is subject to the particle sampling noise, the particle concentration rate at

the transmitter location̂rT (tn) corresponds to the first finite time difference of the particle concentration

ĉT (t), which is step-wise and, therefore, not derivable:

r̂T (tn) =
ĉT (tn)− ĉT (tn−1)

tn − tn−1
(23)

Since the particle concentration̂cT (t) is a double non-homogeneous Poisson counting process, the particle

concentration rate at the transmitter locationr̂T (t) is the first finite time difference of a double non-

homogeneous Poisson counting process, whose average value〈r̂T (t)〉, where〈.〉 denotes the ensemble

average operator, has the same value as the rate of occurrence of the originating double Poisson counting

process:

〈r̂T (t)〉 = rT (t) (24)

and whose autocorrelation is the expected squared particleconcentration rater2T (t) added to the expected
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particle concentration raterT (t) itself only for correlation lagl equal to0:

〈r̂T (t) · r̂T (t+ l)〉 = r2T (t) + rT (t)δ(l) (25)

whereδ(l) is a Dirac delta. Given (17) and (18), the random processñs(t) has zero average value and

its autocorrelationRs(t, l) is equal to the expected particle concentration raterT (t) for correlation lagl

equal to0:

Rs(t, l) = 〈ñs(t) · ñs(t+ l)〉 = rT (t)δ(l) (26)

Therefore the random processñs(t) is white [26] and its mean squared value is the expected particle

concentration raterT (t):

〈ñ2
s(t)〉 = 〈ñs(t) · ñs(t+ l)〉|l=0 = rT (t) (27)

Taking into account (6), then the RMS of the perturbationRMS(ñs(t)) on the expected particle concen-

tration raterT (t) is equal to the square root of the expected particle concentration raterT (t):

RMS(ñs(t)) =
√

rT (t) (28)

According to [17], the relation between the input signalT (t) and the particle concentration raterT (t)

is expressed in the frequency (f ) domain as:

r̃T (f) = Ã(f)T̃(f) (29)

whereT̃(f) and r̃T (f) are the Fourier transforms [27] of the system input signalT (t) and the particle

concentration raterT (t) at the transmitter location, respectively.Ã(f) is the Transfer Function Fourier

Transform [27] (TFFT) of the transmitter module. The same relation in the time (t) domain becomes:

rT (t) = a(t) ∗ T (t) (30)

where∗ denotes the convolution operator [27],a(t) is the impulse response of the transmitter module

andT (t) is the input signal. The formula for the RMS of the perturbation RMS(ñs(t)) on the signal

r̂T (t) becomes:

RMS(ñs(t)) =
√

a(t) ∗ T (t) (31)

IV. T HE PARTICLE COUNTING NOISE

A. The Physical Model

The particle counting noise affects the physical end-to-end model from [17] at the signal propagation.

When the particle concentration ratêrT (t) is being modulated at the transmitter location(x = 0; y =

0; z = 0), the signal propagates until reaching the receiver location (xR; yR; zR), where the particle

concentration valuec(xR, yR, zR, t) is measured through the quantitycR(t). The propagation of the

signal is achieved by means of the particle diffusion process, sketched in Fig. 6(a), which is based on

the following assumptions:
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(a) Graphical sketch of the diffusion process. (b) Graphical sketch of the PARTICLE COUNTING:

diffusion process and particle counting noise contri-

bution.
Fig. 6.

• The linear size of the transmitter (radius of the spherical boundary) is considered negligible with

respect to the distance between the transmitter and the receiver. Therefore, thetransmitter is ap-

proximated as apoint-wiseconcentration rate source at the location(x = 0; y = 0; z = 0).

• Particles are propagating from the transmitter location(x = 0; y = 0; z = 0) to the receiver location

(xR; yR; zR) solely by means of the laws of free diffusion in a fluidic medium.

• The measure of the particle concentration takes place inside thereceptor space. The receptor space

has aspherical shape of radiusρ.

• The particleconcentrationc(x, y, z, t) is considered homogeneous inside the receptor space and

equal to the particle concentration value at the receiver location, namely,c(xR, yR, zR, t).

The model of the particle diffusion process provided in [17]does not take into account the discrete

nature of the particles and the randomness of their movements when the concentrationc(xR, yR, zR, t)

inside the receptor space is measured. Therefore, the measured particle concentrationcR(t) is considered

equal to the true particle concentration at the receiver location c(xR, yR, zR, t):

cR(t) = c(xR, yR, zR, t) (32)

In the present analysis, we introduce the following assumptions:

• The receptor space contains adiscrete number of particles.

• Particles may enter/leave the receptor space due to the diffusion process, even when the concentration

c(xR, yR, zR, t) at the receiver location is maintained at a constant value.

As a result, the measured particle concentrationĉR(t) suffers from two effects. The first effect is given

by the quantization of the concentration measure due to a discrete number of particles inside the receptor

space. The second effect is given by fluctuations in the concentration measure due to single events of

particles entering/leaving the receptor space. The overall process that takes the particle concentration
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(a) Block scheme of the particle counting noise phys-

ical model.

(b) Graphical sketch of the receiver kinetic state

S̄R(t) at time t. S̄R(t) depends on the particle

concentrationcR(t) in input through the expressions

in (34) and (35).
Fig. 7.

rate r̂T (t) as input and returnŝcR(t) as output is called PARTICLE COUNTING and it is graphically

sketched in Fig. 6(b). The PARTICLE COUNTING is composed of the Diffusion Process block and the

particle counting noise blocknc(t), as shown in Fig. 2. During the PARTICLE COUNTING, particles

present inside the receptor space at time instantt are counted, and their number̂Np(t) is divided by the

size of the receptor space(4/3)πρ3:

ĉR(t) =
N̂p(t)

(4/3)πρ3
, N̂p(t)ǫN (33)

whereN̂p(t) is a discrete integer number.

The PARTICLE COUNTING physical model is represented thoughthe block scheme shown in Fig. 7(a).

The particle concentration ratêrT (t) is the input of the Diffusion Process block, whose output is the true

particle concentrationcR(t). The physical model of the particle counting noisenc(t) takes as input the

true particle concentrationcR(t) that the diffusion process would produce in output in the absence of

noise. The particle counting noisenc(t) is composed of two branches, as shown in Fig. 7(a). The upper

branch has a decision block and a non-uniform sampler, whichhave as input the receiver kinetic state

S̄R(t), while the lower branch has a multiplier and rounder block and it takes as input the true particle

concentrationcR(t). The two branches are then added and the result is followed bya divisor. The output

of the particle counting noisenc(t) is the particle concentration affected by noise, namely,ĉR(t).

The receiver kinetic state S̄R(t), as shown in Fig. 7(b), is a set composed by the locationx̄p(t) of

each particlep at time t present in the surrounding of the receptor space:

S̄R(t) = {x̄p(t)| p = 1, ..., P (t)} (34)

whereP (t) is the number of particles in the system and varies as a function of the timet. In order to

realistically simulate the receiver kinetic statēSR(t), we consider the Brownian motion contribution at
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every time instantt. The expression of the particle location̄xp(t) is written as follows:

x̄p(t) = bx(t) î+ by(t) ĵ + bz(t) k̂ (35)

where the Brownian motion velocity components, namely,bx(t), by(t) and bz(t), are random variables

with normal distribution, zero mean value and variance equal to 2Dδt, according to the expression of

the Wiener process [26]:

bx(t), by(t), bz(t) ∼ N (0, 2Dδt) (36)

along the versors of the cartesian axes, namely,î, ĵ and k̂. D is the diffusion coefficient andδt is the

simulation time step and it depends on how the receiver kinetic state is sampled during the physical model

simulation. The smaller is the time stepδt, the closer is the simulation to the real physical phenomenon of

particle diffusion. The particle numberP (t) is proportional to the particle concentrationcR(t) multiplied

by the sizesize(Ss) of the simulation spaceSs, shown in Fig. 7(b), which includes the receptor space:

P (t) = cR(t) size(Ss) (37)

The decision block assigns the value ofln according to the receiver kinetic statēSR(t). ln can assume

either value1 or −1 depending whether the kinetic statēSR(t) has an event concerning a particle that

is entering or leaving the receptor space, respectively:

ln =







1 if S̄R(t) ⊂ {x̄p(t)|p enters the receptor space}
−1 if S̄R(t) ⊂ {x̄p(t)|p leaves the receptor space}

(38)

The non-uniform sampler block samples at time instantstn, which are functions of the receiver

kinetic stateS̄R(t). If, at time instanttn, there is an event in the kinetic statēSR(tn) concerning a

particle entering/leaving the receptor space, the non-uniform sampler block produces a Dirac impulse at

tn, with amplitude equal to the current value ofln, in the outpute(t) from the decision block:

e(t) = lnδ(t − tn)if S̄R(tn) ⊂ {x̄p(tn)|p ent./leav. rec. space} (39)

The integration block integrates the output from the nonuniform sampler fora time interval equal to

τ in the past up to timet, namely,[t− τ, t]:

∆Np(t) =

∫ t

t−τ

e(t′)dt′ (40)

τ corresponds to the time interval in which we expect a quasi constant particle concentration and its

effect on the particle counting noise is further discussed in Sec. IV-B. The result of the integration block

is the perturbation∆Np(t) at time t in the number of particles inside the receptor space.

The multiplier and rounder block rounds the particle concentrationcR(t) multiplied by the size of

the receptor space(4/3)πρ3. The output of this block corresponds to the expected numberof particles

Np(t) contained in the receptor space at time instantt:

Np(t) = round

[

cR(t)

(

4

3
πρ3

)]

(41)
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The divisor block divides the sum of the output coming from the two branches, namely,∆Np(t) and

Np(t), by the size of the receptor space(4/3)πρ3. As a consequence, the output of the divisor block

corresponds to the particle concentrationĉR(t) at the receiver affected by noise:

ĉR(t) =
Np(t) + ∆Np(t)

4
3πρ

3
=

N̂p(t)
4
3πρ

3
(42)

Since it is not possible to always have knowledge of the kinetic state of the system̄SR(t) due to

the huge amount of information and to the randomness in the particle motion, we cannot analytically

compute the value of̂cR(t) as function ofcR(t) from the physical model of the particle counting noise.

Using the physical model provided here, we can only simulatenumerically the behavior of the particle

counting noisenc(t).

B. The Stochastic Model

The particle counting noise, similarly to the particle sampling noise, can also have another formulation,

through statistical parameters, which is suitable when theoretical studies require an analytical expression

of the noise. Statistical parameters for the particle counting noise, such as the RMS value, are provided

in [21] without the definition of a complete stochastic modelin terms of random processes. The derivation

of these statistical parameters in [21] stems from a formulation of the particle counting noise in terms

of macroscopic thermodynamic fluctuations in the system, without accounting for a particle-by-particle

analysis. In this paper, we detail the knowledge of the particle counting noise by providing a stochastic

model of the noise source. This model is obtained by stemmingfrom the physical model outlined in

Sec. IV-A, where the system is modeled in a particle-by-particle fashion. As will be proved in the

following, the statistical parameters computed through the stochastic model provided here are in agreement

with those from [21].

The particle counting noisenc(t) is generated by a random processñc(t), whose contribution cor-

responds to the difference between the measured particle concentrationĉR(t) and the expected particle

concentration〈ĉR(t)〉, where〈.〉 denotes the ensemble average operator:

ñc(t) = ĉR(t)− 〈ĉR(t)〉 (43)

The expected particle concentration〈ĉR(t)〉 corresponds to the true particle concentrationcR(t) that we

would measure at the receiver in the absence of the particle counting noise:

〈ĉR(t)〉 = cR(t) (44)

In other words,̃nc(t) is an unwanted perturbation on the particle concentration measured at the receiver

location around its expected valuecR(t) due to the particle counting noise. In Fig. 8 we show the

main block scheme of the PARTICLE COUNTING when the stochastic model is applied for the particle

counting noise. The random processñc(t), as it is proved in the following, depends on the value of
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Fig. 8. Block scheme of the particle counting noise stochastic model.

the particle concentration at the receivercR(t), output from the diffusion process, which receives the

transmitted particle concentration raterT (t) as input. The sum of the random processñc(t) and the true

particle concentration at the receivercR(t) is the particle concentration affected by the particle counting

noise, namely,̂cR(t). In order to properly model the random processnc(t) we consider the following

assumptions:

• The actual number of particleŝNp(t) inside the receptor space at timet is a random process whose

average value is the true particle concentration at the receiver multiplied by the size of the receptor

space:

〈N̂p(t)〉 = cR(t)
4

3
πρ3 (45)

• It is unlikely to have two particles occupying the same location in space at the same time instantt.

In other words, the probability of having a distance equal tozero between two particles at the time

instantt is zero:

Pr [‖x̄p(t)− x̄q(t)‖ = 0] = 0 p 6= q, p, q ∈ [1, . . . , P (t)] (46)

whereP (t) is given by (37),‖.‖ is the Euclidian distance operator andp and q are two particles

present in the simulation spaceSs defined in Sec. IV-A. This assumption is justified by the in-

dependence of the Brownian components in the movement of different particles in the space. This

assumption directly translates into the property of orderliness for the counting process of the number

of particlesn̂p(t, x̄(t)) at a locationx̄(t) in the space:

lim
∆̄→0

= Pr
[

|n̂p(t, x̄(t) + ∆̄)− n̂p(t, x̄(t))| > 1
]

→ 0 (47)

where∆̄ is a movement in the three directions of the space fromx̄(t) to x̄(t) + ∆̄.

• An event concerning a particle which occupies a location in spacex̄(t) is independent of any event

of the same kind occurring at another space locationx̄(t) + ∆̄. This assumption is justified by

the property of the Wiener process underlying the particle Brownian motion of having independent

realizations. In other words, the distribution of the distance between the location of a particle in

x̄(t) and another particle in̄x(t) + ∆̄1 is independent from the distribution of the distance between

the same particle at̄x(t) and another particle present at locationx̄(t) + ∆̄2, where∆̄1 6= ∆̄2. The
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two distributions have the same expression from (36):

Pr
(

‖∆̄1‖ = x
)

= 1√
2πD∆t

e−
x
2

2D∆t

= Pr
(

‖∆̄2‖ = x
)

(48)

This implies that the location of a particle is independent from the location of any other particle.

As a consequence, the events concerning the location of particles in the space have the property of

memorylessness.

• The occurrence rate of particle location in the space is proportional to the particle concentration at

the receiver locationc(xR, yR, zR, t), equal to the expected true particle concentrationcR(t).

Under these assumptions, the resulting actual number of particles N̂p(t) inside the receptor space is a

volume non-homogeneous Poisson counting process, whose rate of occurrence corresponds to the expected

particle concentrationcR(t):

N̂p(t) ∼ Poiss(cR(t)) (49)

According to the Poisson process [26] in (49), the expected number of particles〈N̂p(t)〉 contained

in the receptor space can be computed by multiplying the volume Poisson process rate, which is the

concentrationcR(t), by the size of the receptor space(4/3)πρ3 and it is in agreement with the assumption

made in (45). The variance in the number of particles contained in the receptor space has the same value

as 〈N̂p(t)〉 [26]:

〈(N̂p(t)− 〈N̂p(t)〉)2〉 = cR(t)
4

3
πρ3 (50)

The actual measured particle concentrationĉR(t) corresponds to the actual number of particlesN̂p(t)

divided by the size of the receptor space:

ĉR(t) =
N̂p(t)

(4/3)πρ3
(51)

Therefore, the average〈ĉR(t)〉 of the actual measured particle concentration is equal to the expected

particle concentrationcR(t):

〈ĉR(t)〉 = cR(t) (52)

The variance of the actual measured particle concentrationis equal to the expected particle concentration

cR(t) divided by the size of the receptor space:

〈(ĉR(t)− 〈ĉR(t)〉)2〉 =
〈(N̂p(t)− 〈N̂p(t)〉)2〉

(4/3)πρ3
=

cR(t)

(4/3)πρ3
(53)

Given (43), (44) and (6), the random processñc(t) has zero average value and the RMS of the

perturbationñc(t) on the actual measured particle concentrationĉR(t) is:

RMS(ñc(t)) =
√

〈(ĉR(t)− 〈ĉR(t)〉)2〉 =
√

cR(t)

(4/3)πρ3
(54)
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It is possible to reduce the value ofRMS(ñc(t)) by averaging in time a numberM of measures of

the particle concentration̂cR(t):

ĉR(t) =
1

M

M
∑

m=1

ĉR(t− tm) (55)

The best results in terms of noise are obtained when theM measures are statistically independent. For

this, we assume independent measures when they are taken at time instants spaced by an intervalτp, as

defined in [20]. If we assume to have a quasi-constant expected concentration in a time intervalτ (which

means that the bandwidth of the signalcR(t) is less than1/τ [27]), the maximum value ofM is equal

to the time intervalτ divided byτp:

M =
τ

τp
(56)

thus, reducing the RMS of the perturbationRMS(ñc(t)) by a factor
√
M :

RMS(ñc(t)) =

√

cR(t)

(4/3)πρ3M
(57)

The waiting timeτp corresponds to the average time required for a particle to leave the reception

space.τp is equal to the average distance to the spherical boundary, divided by the velocity of a particle

vp. The average distance corresponds to the receptor space radius ρ:

τp =
ρ

vp
(58)

The velocityvp of a particle comes from the first Fick’s law of diffusion [10,11]. For this, the particle

concentration fluxJ̄(x̄, t) at time instantt and locationx̄, is equal to the spatial gradient (operator∇)

of the particle concentrationc(x̄, t) multiplied by the diffusion coefficientD:

J̄(x̄, t) = −D∇c(x̄, t) (59)

When we have homogeneous concentrationc̄ inside the receptor space and zero concentration outside

the receptor space,∇c(x̄, t) is equal to the opposite−c̄ of the concentration divided by the radiusρ of

the receptor space. Further, the particle concentration flux J̄(x̄, t) is equal, by definition, to the particle

concentration̄c multiplied by the particle velocityvp. If we solve (59) for the particle velocity, we obtain:

vp =
D

ρ
(60)

The average timeτp is therefore equal to the radiusρ squared and divided by the diffusion coefficient

D:

τp =
ρ2

D
(61)

which is in agreement with the results from [20,21]. The finalexpression for the RMS of the perturbation

RMS(ñc(t)) becomes:

RMS(ñc(t)) =

√

cR(t)

(4/3)πDρτ
(62)
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wherecR(t) is the expected measured particle concentration,D is the diffusion coefficient,ρ is the radius

of the receptor space andτ is the time interval in which we expect a quasi-constant particle concentration.

The validity of (62) is confirmed by the results from [21], where the authors reach the same expression

for the RMS of the particle counting noise by applying a different approach, as explained above.

According to [17], the relation between the input particle concentration ratêrT (t) and the measured

particle concentrationcR(t) at the receiver location is expressed in the frequency (f ) domain as:

c̃R(f) = B̃(f)˜̂rT (f) (63)

where˜̂rT (f) and c̃R(f) are the Fourier transforms [27] of the particle concentration rater̂T (t) and the

particle concentrationcR(t), respectively.B̃(f) is the Transfer Function Fourier Transform [27] (TFFT)

of the propagation module. The same relation in the time (t) domain becomes:

cR(t) = b(t) ∗ r̂T (t) (64)

where∗ denotes the convolution operator [27],b(t) is the impulse response of the propagation module and

r̂T (t) is the input particle concentration rate. The formula for the RMS of the perturbationRMS(ñc(t))

on the signal̂cR(t) becomes:

RMS(ñc(t)) =

√

b(t) ∗ r̂T (t)
(4/3)πDρτ

(65)

whereD is the diffusion coefficient,ρ is the radius of the spherical receptor space, andτ is the time in

which we expect a quasi-constant particle concentration.

V. SIMULATIONS

In this section we present a numerical analysis of the diffusion-based noise models. Sets of noise data

realizations are generated through numerical simulation of the physical model. These sets of noise data

are then used to test the stochastic model ability to capturethe behavior of the physical processes which

generate the noise.

A. The Particle Sampling

The simulations of thephysical model for the particle sampling noise are computed by applying to

the scheme in Fig. 4(a) a sinusoidal signal in the particle concentration raterT (t):

rT (t) = A sin(2πfat) (66)

wherefa is the frequency of the sinusoid in Hz,A is the value of the maximum particle concentration

rate in particlesµm−3sec−1, andt is the simulation time index inmsec.

The input of the physical model simulation is a sinusoidal particle concentration raterT (t) with

frequencyfa equal to4Hz and maximum particle concentration rateA of 10 particlesµm−3sec−1, as

shown in Fig. 9(a). The radius of the transmitter spherical boundary isρ = 1µm. The simulation runs for
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(a) The particle sampling noise physical model sim-

ulation input.

(b) The particle sampling noise physical model sim-

ulation output.
Fig. 9.

1sec by steps ofδt = 1msec. The output noisy particle concentration rater̂T (t) of the physical model

simulation is shown in Fig. 9(b).

During the simulation, particles are generated inside the transmitter spherical boundary at random lo-

cations whenever the particle concentration raterT (t) is positive. Particle deletion is randomly performed

inside the transmitter spherical boundary wheneverrT (t) is negative. Through particle generation and

particle deletion we control the number of particles in the systemP (t), which is a parameter of the

transmitter kinetic statēST (t) shown in (9). The Brownian motion of the particles is modeledaccording

to (10) and having the diffusion coefficientD ∼ 10−6cm2sec−1 of calcium molecules diffusing in a

biological environment (cellular cytoplasm, [28]). Samples contributing to the value of̂rT (t) are generated

by applying (13) and (15) to the transmitter kinetic stateS̄T (t). The final results in terms of particle

concentration ratêrT (t) is achieved by applying (16).

The particle sampling noise has two different effects on thesinusoidal signal, namely, signal sampling

and signal amplitude distortion. Signal sampling is given by the non-homogeneous sampling of the

particle concentration raterT (t) in time, as shown in Fig. 9(b). In non-homogeneous sampling,samples

are separated by a non-constant time interval. Since in the simulations we apply a constant time stepδt,

for each time steps the contributions of samples which occurwithin δt are added. The signal amplitude

distortion is given by the constant contribution that each particle gives to the concentration at the

transmitter location, (14), whenever a sample is generatedby the non-homogeneous sampling. Constant

contributions in non-homogeneous sampling cause sudden changes in the particle concentration rate value,

which result in distortions of its amplitude.

The statistical likelihood test is applied in order to assess the stochastic model ability to capture the

behavior of the physical processes which generate the noise. For this, we compute the likelihood, that is,

the probability of the noisy data coming from the physical model simulationr̂T (t) given the stochastic

model of the particle sampling noise, as defined in Sec. III-B. In order to evaluate the reliability of the
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(a) The particle sampling stochastic model likelihood.(b) The Gaussian model likelihood for the particle

sampling noise.
Fig. 10.

particle sampling stochastic model parameters in (25) and (27), the likelihood probability is evaluated

for a range of different values for the parameterrT (t) of the Poisson processes in (22):

likelihoodParticleSampling = Pr (r̂T (t)|Part.Sampl.storT(t)) (67)

whererT (t) ranges from0.1 to 10 particlesµm−3sec−1 for every time instantt. The results are shown in

Fig. 10(a), where it is clearly visible that the highest likelihood value corresponds, for every time instant

t, to the value ofrT (t) from (66), thus confirming that the best particle concentration rate, parameter

of the model, is actually the particle concentration rate ininput to the physical model of the particle

sampling noise.

This statistical likelihood test results shown in Fig. 10(a) are compared to the results obtained through

the use of a Gaussian model in place of the particle sampling noise stochastic model. The Gaussian

model, denoted byN (rT (t), rT (t)) has the same expected value and the same variance as the particle

sampling noise stochastic model. The likelihood formula is:

likelihoodGaussian = Pr (r̂T (t)|N (rT (t), rT (t))) (68)

whererT (t) ranges from0.1 to 10 particlesµm−3sec−1 for every time instantt. The results in terms of

Gaussian model likelihood are shown in Fig. 10(b). When the Gaussian model is applied, the likelihood

shows higher values than when using the particle sampling stochastic model, but only at specific time

instants. On average, the likelihood values shown in Fig. 10(b) are much lower than the values in Fig. 10(a)

and this proves that the particle sampling stochastic modelperforms better than the Gaussian model. This

preliminary result confirms the validity of the particle sampling stochastic model presented in this paper.

B. The Particle Counting

The simulations of the physical model for the particle counting noise are computed by applying to the

scheme in Fig. 7(a) a sinusoidal signal in the true particle concentration at the receivercR(t):

cR(t) = B sin(2πfbt) +B (69)
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(a) The particle counting noise physical model simu-

lation input.

(b) The particle counting noise physical model simu-

lation output.
Fig. 11.

where fb is the frequency of the sinusoid in Hz,2B is the maximum value of the expected particle

concentration in particlesµm−3, andt is the simulation time index inmsec.

The input of the physical model simulation is a sinusoidal particle concentrationcR(t) with frequencyfb

equal to4Hz and maximum particle concentration2B of 2000 particlesµm−3, as shown in Fig. 11(a). The

radius of the spherical receptor space isρ = 1µm. The simulation runs for1sec by steps ofδt = 1msec.

The output noisy particle concentrationĉR(t) of the physical model simulation is shown in Fig. 11(b).

A numberP (t) of particles are deployed according to (37) for each time at random locations inside the

simulation spaceSs, shown in Fig. 7(b), which includes the receptor space. The receptor kinetic state is

maintained according to (34) and (35), where the Brownian motion of the particles is modeled according

to (36). The diffusion coefficientD ∼ 106cm2sec−1 corresponds to theD of calcium molecules diffusing

in a biological environment (cellular cytoplasm, [28]). The upper branch of Fig. 7(a), which generates

the contribution∆Np to the final result, is computed by applying (38) and (39) to the transmitter kinetic

stateS̄T (t). Equation (40) is applied with a valueτ = 1msec, equal to a simulation step. The lower

branch of Fig. 7(a) gives the second contribution to the finalresult and includes the computation ofNp(t)

through (41). The final results in terms of particle concentration ĉR(t) is achieved by applying (42) to

the sum of the outputs from the upper branch and the lower branch.

The particle counting noise is visible through two effects,as shown in Fig. 11(b). The first effect

is given by the quantization of the concentration measure bya discrete number of particles inside the

receptor space. The second effect is given by fluctuations inthe concentration measure due to single

events of particles entering/leaving the receptor space. The latter is more accentuated for high values

of the particle concentration. This behavior is a confirmation of the fact that the RMS value of the

particle counting noise is proportional to the square root of the true particle concentrationcR(t), as

shown in (54), (57) and (62).

The statistical likelihood test is applied in order to assess the stochastic model model ability to capture
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(a) The particle counting stochastic model likelihood.(b) The Gaussian model likelihood for the particle

counting noise.
Fig. 12.

the behavior of the physical processes which generate the noise. For this, we compute the likelihood, that

is, the probability of the noisy data coming from the physical model simulation̂cR(t) given the stochastic

model of the particle counting noise, as defined in Sec. IV-B.In order to evaluate the reliability of the

particle counting stochastic model parameters in (52) and (53), the likelihood probability is evaluated for

a range of different values for the parametercR(t) of the Poisson processes in (49):

likelihoodParticleCounting = Pr (ĉR(t)|Part.Count.stocR(t)) (70)

wherecR(t) ranges from1 to 2000 particlesµm−3 for every time instantt. The results are shown in

Fig. 12(a), where it is clearly visible that the highest likelihood value corresponds, for every time instant

t, to the value ofcR(t) from (69), thus confirming that the best particle concentration model parameter

is actually the particle concentration in input to the physical model of the particle counting noise.

This statistical likelihood test results shown in Fig. 12(a) are compared to the results obtained through

the use of a Gaussian model in place of the particle counting noise stochastic model. The Gaussian

model, denotedN (cR(t), cR(t)/(4/3πρ
3)) has the same expected value and the same variance as the

particle sampling noise stochastic model. The likelihood formula is:

likelihoodGaussian = Pr

(

ĉR(t)|N
(

cR(t),
cR(t)

(4/3πρ3)

))

(71)

wherecR(t) ranges from1 to 2000 particlesµm−3 for every time instantt andρ = 1µm. The comparison

between the Gaussian model likelihood and the particle counting stochastic model drives us to the same

conclusions we had for the particle sampling noise. At specific time instants the Gaussian model likelihood

shows higher values than when using the particle counting stochastic model but, on average, the likelihood

values shown in Fig. 12(b) are much lower than the values in Fig. 12(a). This proves that the particle

counting stochastic model performs better than the Gaussian model and it confirms the stochastic model

ability to express the behavior of the physical processes underlying the particle counting noise.
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VI. CONCLUSIONS

In this paper we analyze the most relevant diffusion-based noise sources affecting Molecular Com-

munication (MC). To date, little effort has been made to model the diffusion-based noise sources from

the communication engineering perspective, while contributions from the biochemistry literature provide

descriptions of some underlying physical processes. However, these contributions tend to focus on the

explanation of natural phenomena and do not provide suitable models for MC engineering. The objective

of this work is the analysis of the noise sources in diffusion-based MC using tools from signal processing,

statistics and communication engineering, with referenceto the diffusion-based MC system introduced

in [17].

The particle sampling noise and the particle counting noiseare identified in this paper as the most

relevant diffusion-based noise sources affecting the MC physical end-to-end model from [17]. The analysis

of the noise sources results both in physical models and stochastic models. With the former we aim at

the mathematical expression of the physical processes underlying the noise sources, while with the latter

we model the noise source behaviors through the use of statistical parameters. For both the two noise

sources, the results of the physical models are summarized through block schemes, which expand the

end-to-end physical model from [17]. The stochastic modelsof both the two noise sources result in their

characterization in terms of random processes and in the analytical expression of the Root Mean Square

(RMS) perturbation of the noise on the information signal.

Simulations are shown to evaluate the capability of the stochastic models to express the diffusion-based

noise sources represented by means of the physical models.

The results coming from this work will be used to have a betterinsight into the end-to-end diffusion-

based MC, especially in terms of capacity and throughput. Webelieve that this paper provides a prelim-

inary study on the noise affecting the end-to-end diffusion-based MC, and that further investigation on

this topic is necessary. ACKNOWLEDGMENT
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